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ABSTRACT

This paper introduces a new semi-supervised classification and
segmentation approach tailored to hyperspectral images. The poste-
rior distributions of the classes are modeled by the multinomial lo-
gistic regression. The contextual information inherent to the spatial
configuration of the image pixels is modeled by a Multi-Level Lo-
gistic (MLL) Markov-Gibbs random field. The multinomial logistic
regressors, assumed to be random vectors with independent Lapla-
cian components, are learned using the recently introduced LOR-
SAL algorithm. The maximum a posteriori (MAP) segmentation
is computed via the α-Expansion algorithm, a powerful graph cut
based approach to integer optimization. The effectiveness of the pro-
posed methodology is illustrated by classifying simulated and real
data sets. Comparisons with state-of-art methods are also included.

1. INTRODUCTION

In the recent years, new techniques have been developed in the fields
of image classification and segmentation. Some of these techniques
have been applied to remote sensing images, yielding effective re-
sults [1]. However, the classification and segmentation of high di-
mensional datasets, such as hyperspectral images, is still a challeng-
ing endeavor. Hurdles, such as the Hughes phenomenon, come out
as the data dimensionality increases; in order to obtain an accept-
able classification accuracy, large number of labeled samples are re-
quired, which may be difficult, expensive, or sometimes impossible
to get. These difficulties foster active research on supervised and
semi-supervised algorithms targeted at high dimensional data sets
and limited training samples [2, 3].

The discriminative approach to classification circumvents part of
the above difficulties by inferring the boundaries between classes in
the feature space [4, 5]. Discriminative approaches have shown suc-
cess in dealing with small class distances, high dimensionality, and
limited training sets in hyperspectral classification [6]. The support
vector machines (SVMs) [7] and multinomial logistic regression [8]
are among the state-of-the-art discriminative techniques to classifi-
cation. Due to their ability to deal with large input spaces efficiently
and to produce sparse solutions, SVMs have been successfully used
for hyperspectral supervised classification [6, 9, 10].

The multinomial logistic regression has the advantage of learn-
ing the class distributions themselves. Sparse multinomial logistic
regression methods are available [11]. More recently, the introduc-
tion of the LORSAL (logistic regression via variable splitting and
augmented Lagrangian) algorithm [12] has open the door to deal
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with larger data sets and number of classes. These ideas have been
applied to hyperspectral image classification [13].

A recent trend to improve the classification accuracy in hyper-
spectral classification and segmentation is to include spatial infor-
mation [9, 10, 13]. These methods exploit, in a way or another,
the continuity, in probability sense, of neighboring labels: it is very
likely that, in an hyperspectral image, two neighboring pixels have
the same label.

In this paper, we present a new semi-supervised algorithm which
is an elaboration of [13]. It implements two main steps: (a) learning
step, to infer the class distributions; and (b) segmentation, by infer-
ring the labels from a posterior distribution built on the learned class
distributions and on a multi-level logistic (MLL) prior. The class dis-
tributions are modeled with a multinomial logistic regression, where
the regressors are computed with the LORSAL algorithm. The spa-
tial contextual information is exploited both in defining the MLL
prior and in the active learning strategy for selecting the unlabeled
samples. The maximum a posterior (MAP) segmentation is com-
puted via a min-cut based integer optimization algorithm.

The remainder of the paper is organized as follows. Section
2 formulates the problem. Section 3 describes proposed semi-
supervised approach. Section 4 reports segmentation results based
on simulated and real hyperspectral datasets, in comparison with
state-of-the-art competitors. Finally, section 5 concludes the paper
with some remarks.

2. PROBLEM FORMULATION

Let S ≡ {1, . . . , n} denote a set of integers indexing the pixels of an
image, L ≡ {1, . . . ,K} denote a setK labels, x = (x1, . . . ,xn) ∈
Rd×n denote an image of d-dimensional feature vectors (one per
pixel), and finally y = (y1, . . . , yn) ∈ Ln denote an image of la-
bels. With the above definitions in place, the goal of image classifi-
cation and of image segmentation is to estimate y, having observed
x. In a Bayesian framework, this estimation is, usually, carried out
by maximizing the posterior distribution P (y|x) ∝ p(x|y)P (y),
where p(x|y) is the likelihood function (i.e., the probability of fea-
ture image given the label image) and P (y) is the prior over the label
image. Assuming conditional independency of the features given the
labels, i.e, p(x|y) =

∏i=n
i=1 p(xi|yi), then the posterior P (y|x) is



given by

P (y|x) =
1

p(x)
p(x|y)P (y)

=
1

p(x)

i=n∏
i=1

p(xi|yi)P (y)

= α(x)

i=n∏
i=1

P (yi|xi)

P (yi)
P (y),

(1)

where α(x) ≡
∏i=n

i=1 p(xi)/p(x) is a factor not depending on y. In
this paper we assume, without loss of generality, that P (yi) = 1/K.
The maximum a posteriori (MAP) segmentation is then given by

ŷ = arg max
y∈Ln

{(
n∑

i=1

logP (yi|xi)

)
+ logP (y)

}
. (2)

The next two subsections addresses aspects of the posterior den-
sity P (yi|xi) and of the MLL prior P (y).

2.1. Learning the MLR regressors with the LORSAL algorithm

Let yi = [y
(1)
i , ..., y

(K)
i ]T denote a “1-of-K” encoding of the K

classes and ω(k) ∈ Rd be a vector of parameters associated with
class k. Note the the variables yi, just defined, and yi have different
structure but are equivalent [e.g., (yi = [0, 0, 1, 0]T ) ⇔ (yi = 3)].
The multinomial logistic regression gives the probability of class k
as

P (y
(k)
i = 1|xi,ω) =

exp(ω(k)h(xi))∑K
k=1 exp(ω(k)h(xi)))

, (3)

where ω = [ω(1)T

, ...,ω(K)T

]T and h(x) = [h1(x), ..., hl(x)]T is
a vector of l fixed functions of the input, often termed features. Since
the probability (3) does not depend on translations on the regressors
ω(k), we take ω(K) = 0.

Usual choices for h are h(x) = [1, x1, ..., xd]T , thus linear,
and Kernels, i.e., h(x) = [1,Kx,x1 , ...,Kx,xl ]

T ), where Kx,xj =
K(x,xj) and K(·, ·) is some symmetric kernel function, often non-
linear of x. Kernels have been largely used because they tend to
improve the data separability in the transformed space. In this pa-
per, we use a Gaussian Radial Basis Function (RBF) K(x, z) =
exp[−‖x− z‖2)/2σ2], which are widely used in hyperspectral im-
age classification [6]). From now on, d denotes the dimension of
h(x).

The MAP estimate of ω is

ω̂ = arg max
ω

[l(ω) + log p(ω)], (4)

where l(ω) is the log-likelihood function of ω and p(ω) ∝
exp(−λ‖ω‖1) is the prior of ω, a Laplacian independent density
on each component of ω; λ is a regularization parameter controlling
the degree of sparseness of ω̂. Problem (4), although convex, is
hard because the term l(ω) is non-quadratic and the term ‖ω‖1 is
non-smooth. The SMLR algorithm introduced in [11] solves this op-
timization problem withO((dK)3) complexity, which is unbearable
in data sets with a large number of classes or using Kernels.

The LORSAL algorithm introduced in [12] solves (4) with a
much lighter computational complexity. This is achieved by re-
placing a difficult non-smooth convex problem with a sequence of
quadratic plus diagonal l2-l1 problems, which are solved with a
O(d2) computational complexity. Compared with the SMLR algo-
rithm, the reduction of computational complexity is O(dK3). For
more details see [12].

2.2. The Multi-Level Logistic spatial prior

In order to model the spatial information among the image labels,
we adopt an (MLL) prior given by

P (y) =
1

Z
e

µ
∑
i∼j

δ(yi − yj)

, (5)

where Z is a normalizing constant, δ(y) is the unit impulse func-
tion1, µ > 0 is a parameter controlling the likelihood that two neigh-
boring pixels belong to the same class, and where i ∼ j denotes
first-order neighboring sites. Note that the pairwise interaction terms
δ(yi−yj) attach higher probability to equal neighboring labels than
the other way around. In this way, the MLL prior promotes piece-
wise smooth segmentations.

3. PROPOSED METHOD

3.1. Supervised Segmentation

Using the LORSAL algorithm to learn P (yi|xi) and the MLL prior
P (y), and according to (2), the MAP segmentation is finally given
by:

ŷ = arg min
y∈Ln

{∑
i∈S

− logP (yi|xi)− µ
∑
i∼j

δ(yi − yj)

}
. (6)

The minimization (6) is a hard combinational optimization problem.
However, given that the pairwise interaction term on the right hand
side of (2) is a metric, it is possible to achieve a very good approxi-
mation using the α-Expansion graph cut based algorithm [14–17].

3.2. Semi-supervised Segmentation

Very often, the acquisition of labeled samples is very expensive. In
these cases, we resort to semi-supervised classification/segmentation
approaches, which are based on very few training samples. In our
setup, we run a two-step iterative procedure: in the first step, we
apply the LORSAL algorithm [12], to learn the logistic regressors; in
the second step we compute the MAP segmentation (6) and expand
the set of labeled sampled with a subset of the just obtained labeled
samples.

This procedure has similarities with that of active data selec-
tion [18], [2] in which a given training set {(xi, yi), i = 1, . . . , L}
is sequentially increased by including labeled pairs (xL+1, yL+1)
selected according to a given criterion. For example, the new fea-
ture xL+1 may be chosen to maximize the information about the
values that the model parameters should take. In our approach, we
also increment the training set iteratively by actively selecting pairs
(xj , ŷj). Note that the label ŷj attached to xj is not necessarily cor-
rect, as in the canonical active learning procedures. Nevertheless, as
illustrated in the next section, the proposed selection methodology
is very effective. Concerning the selection criteria, we use neigh-
borhood: since we are dealing with images, it is very likely that to
neighboring pixels have the same label.

The pseudo-code for the semi-supervised algorithm is presented
below, where µ is the regularization parameter, T is the initial la-
beled set, t is the selected labeled sets from the previous iteration,
φ is the neighboring selection criterion, l is the log-likelihood (4),
MMiter is the maximum number of iterations, and tol is the toler-
ance to control the log-likelihood.

1i.e., δ(0) = 1 and δ(y) = 0, for y 6= 0



Algorithm 1 Semi-supervised Segmentation Algorithm
Require: µ, T

while k ≤MMiter or ‖lk − lk−1‖ ≥ tol do
t ⇐ φ(y(k))
T ⇐ T ∪ t
ŷ(k+1) = arg max

y
p(x|y)p(y)

k ⇐ k + 1
end while

4. EXPERIMENT RESULTS

In this section, we evaluate the proposed algorithms with simulated
and real hyperspectral data sets. In all experiments, the spectral vec-
tors are scaled by s > 0 such that ‖x‖2/(s2nl) = 1 (l denotes the
number of bands). RBF kernels are used as regression functions in
(3). The RBF scale parameter is set to σ = 0.6. The prior regular-
ization parameter is set to µ = 2. Each value of Overall Accuracy
(OA) is obtained from 10 Monte Carlo runs. As illustrated below,
this setting, although not optimal for all experiments, leads to effec-
tive results.

4.1. Simulated Dataset

Simulated scenes of dimension 120 × 120 × 221 (100 × 100 is
the spatial size and 221 is the number of bands), and 10 classes are
generated. Each scene is composed of spectral vectors x = z + n,
where x ∈ R221, z are spectral signatures obtained from the USGS
library2 according to the MLL prior P (y) given by (5) with µ = 2,
and n is zero-mean white Gaussian noise. The signal-to-noise ratio
is defined as SNR= E[‖z‖2]/E[‖n‖2].

Fig. 1, top, shows the OA as a function of the SNR. The initial
training set is just 0.3% of the whole scenario (3 labeled pixels per
class) randomly selected; the remaining samples were used as test
set. Fig. 1, right, shows the OA results as a function of the size of
the labeled samples with SNR = 5 dB. For illustrative purposes, Fig.
2, left, shows the spectral band centered at 0.5 nm of the simulated
data set with SNR = 5 dB. The difficulty of the segmentation prob-
lem is evident. Fig. 2, right, shows the segmented image obtained
with 10 labeled samples per class. Observe that, in all case, the
proposed algorithms outperform the LORSAL algorithm, as it does
not use contextual information. Moreover, in spite of using a much
smaller training set, the semi-supervised algorithm outperforms the
supervised counterparts in both plots.

4.2. Real AVIRIS Image

Experiments were also carried out with a real hyperspectral AVIRIS
spectrometer image, the Indian Pines 92 from Northern Indiana,
taken on June 12, 1992 [1]. The scene is available online3, with
145 × 145 pixels and 220 spectral bands. Noisy bands, in number
of 20, due to water absorption were removed. Due to the insufficient
number of training samples, 7 classes were discarded, leaving a
dataset with 9 classes distributed by 9345 elements. This dataset
was randomly partitioned into a set of 4757 training samples and
4588 validation samples. The spatial distribution of the ground truth
image is presented in Fig. 3 (a).

2These signatures were randomly selected from the U.S. Ge-
ological Survey (USGS) digital spectral library, available online:
http://speclab.cr.usgs.gov.

3http://cobweb.ecn.purdue.edu/ biehl/MultiSpec/

Fig. 1. Experiments with simulated data. Left: Overall accuracy as
a function of SNR with 3 training samples. Right: Overall accuracy
as a function of the number of training sample with SNR = 5 dB.

Fig. 2. Simulated scene. Left: Spectral band (0.5 nm) of a simulated
data set generated with SNR = 5 dB. Right: Segmentation result
obtained with 20 training samples per class.

Table 1 shows segmentation results as a function of the size
of the initial labeled samples. These results are compared with
those provided by LORSAL and by the state-of-the-art algorithms
for semi-supervised hyperspectral classification and segmenta-
tion [10, 19, 20]. The proposed semi-supervised algorithm yields
effective results, as shown in the segmentation map displayed in Fig.
3 (b), which was obtained with only 20 training samples per class,
only 180 labeled samples in total.

With much less labeled samples, the proposed algorithm still
produces better results than the compared competitors introduced
in [10,19,20]. With just 10 labeled samples per class, the results ob-
tained by the proposed supervised and semi-supervised algorithms
are 77.98% and 80.15%, respectively. Using 5 labeled samples per
class, the best accuracy presented in [20] is 66.04%, whereas pro-
posed semi-supervised approach yields 72.62%, which is 6.58%
larger than 66.04% from [20].

Using only spectral information and 25 labeled samples per
class, the method [10] yields an OA of 73.41% and 76.20%, which
are lower than those achieved by the proposed method. However,
this comparison is not fair because we are using spatial informa-
tion whereas the figures above were achieved without using this
advantage. In a fair comparison, i.e, both methods using spatial
information and 20% of the training set, which is about 120 labeled
samples per class, the best results from [10]is 96.53%, which is
0.5% less than the proposed semi-supervised algorithm.



(a) (b)

Fig. 3. AVIRIS image. (a), ground truth image; (b), classification
map with 20 labeled samples per class.

5. CONCLUDING REMARKS

The paper introduces a new semi-supervised classification and seg-
mentation algorithm with applications to hyperspectral imagery. The
algorithm is a development of the supervised segmentation method
proposed in [13]: The probability of the classes are learned discrim-
inatively with the LORSAL algorithm [12] and the spatial contex-
tual information is modeled by a multilevel-logistic Markov random
field. Unlabeled samples are actively selected and used to recur-
sively learn the class densities.

The effectiveness of the proposed semi-supervised segmentation
algorithm was illustrated with simulated data and in a comparison
with state-of-the-art competitors.
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