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Abstract--This paper proposes a new nonparametric ap-
proach to the estimation of the mean Doppler velocity (first
spectral moment) and the spectral width (square root of the
second spectral centered moment) of a zero-mean stationary
complex Gaussian process immersed in independent additive
white Gaussian noise. By assuming that the power spectral
density of the underlying process is bandlimited, the exact
maximum likelihood estimates of its spectral moments are
derived. An estimate based on the sample covariances is also
studied. Both methods are robust in the sense that they do not
rely on any assumption concerning the power spectral density
(besides being bandlimited). Under weak conditions, the es-
timates based on sample covariances are best asymptotically
normal.

I. Introduction

The goal of spectral estimation is to infer the power spectral
density (PSD) from a finite observation of the underlying
process. This subject has been extensively studied, yielding
a large set of techniques. However, in many applications
the objective is the determination of PSD functionals, rather
than the PSD itself. This is the case of spectral moments
(SMs), particularly, the mean power, the mean velocity, and
the spectral width, with applications to (naming only a few):
weather radar [1], [2]; clear-air turbulence measurement [3];
ultrasound imaging in medicine [4]; and to synthetic aperture
radar [5].

Concerning Doppler weather radars, the goal is the deter-
mination of the three first SMs. These moments are closely
related with physical entities of interest within the resolution
volume [2]; the mean power (zeroth moment) is related with
the water content, the mean frequency (first moment) is related
with the backscatterers mean radial velocity, and the spectral
width (square root of the second centered moment) is a measure
of the backscatterers velocity dispersion.

In a typical weather radar, the number of estimates per
complete aerial revolution can be as large as 3× 360, 000. This
has to be done in real or near real time, which means a few tens
of seconds. On the other hand, in order to have, simultaneously,
an acceptable azimuthal velocity (a few revolutions per minute)
and to prevent the broadening of the lateral antenna pattern, the
number of samples per estimate should not be large; typical
values are 16, 32, 64, or 128 (depending on the azimuthal

velocity and on the lateral aerial resolution). Consequently,
any SM estimator in weather radar applications should meet
the requirement of being low in complexity (in a computational
sense) yielding estimates of acceptable quality based on small
sample sizes.

A. Classical Estimators

Well known nonparametric techniques are the covariance or
pulse pair (PP) estimate [6], [7], and the periodogram based
(PB) estimate [1], which are representative of the covariance
and the spectral approaches, respectively.

Concerning the PP statistical properties, we have the fol-
lowing: (1) the mean frequency is increasingly biased with
the spectral skewness [7]; (2) the spectral width estimate is
biased, regardless the spectral shape (its bias increases with the
spectral width); (3) the relative variances (compared with the
Cramer-Rao bound) of both estimates display parabolic like
curves, with minima at intermediate spectral widths [8].

Concerning the PB statistical properties, we have the fol-
lowing: (1) the mean frequency estimator is biased due to the
finite resolution associated to the FFT (this is a serious problem
whenever the sample is small); (2) the spectral width estimator
is biased due to the windowing effect associated to the DFT; (3)
the relative variance of both estimates at low spectral widths
display similar features to the PP ones. However, at high
spectral widths the performance of the PB method is better than
the PP one.

Despite the reported shortcomings, the PP and PB estimators
exhibit a good tradeoff between computational complexity and
performance. As a result, they are extensively used in weather
radar applications.

By constraining the search space, parametric approaches
deliver estimates with lower uncertainty, when compared with
nonparametric procedures. Concerning this matter, the maxi-
mum likelihood (ML) criterion plays a prominent role, given
its optimal properties, at least in asymptotic sense. In the
field of parametric ML spectral moments estimation, various
approaches have been proposed [1], [9], [10]. Besides ML, also
maximum entropy [11] and Bayesian criteria [12] have been
suggested.

Parametric methods have, generally speaking, higher com-
plexity than nonparametric ones. The fact that none of the
above parametric approaches has been used in real time or
near real time weather radar applications strengthens this idea.



Gaussian spectral shape has been extensively used. Although
having some experimental justification, the Gaussian shape
assumption is not without weaknesses. This is put in evidence
in [13], where a systematic and exhaustive measurement of
spectral shape from precipitation echoes is reported. According
to the authors’ conclusions, ‘‘... a Gaussian spectral shape
agrees reasonably with a large fraction of the obtained spectra.
However, in about a quarter of the cases the deviation from the
Gaussian shape is considerable, e.g., one or both edges may be
too steep or two slight, the peak may be off-center, there may
be more than one peak." Thus, a more accurate spectral fitting
should be looked for. This can be achieved, for example, with
autoregressive moving average (ARMA) models of adequate
dimension, of which the work reported in [14] is an example.
However, the complexity inherent to the ARMA parameters
estimation is unbearable in weather radar applications.

As a conclusion of the above considerations, the classi-
cal nonparametric PP and PB estimators are characterized by
having low complexity and tolerable, sometimes poor, perfor-
mance. On the other hand, parametric estimators rely strongly
on spectral shape assumptions; in this sense they are not ro-
bust. Moreover, their complexity is incompatible with practical
weather radar applications.

B. Rationale of the Proposed Approach

The method herein presented explores the fact that the
PSD of weather echoes is bandlimited. In fact, the PSD
associated to each resolution volume is a weighted replica of
the hydrometeors velocity distribution [15]. Since in each
resolution volume the hydrometeors have a maximum and a
minimum velocity, the PSD Sx(f) is bandlimited, i.e. Sx(f) =
0 for f /∈ [−fm, fm]. Thus, the sampling theorem assures that
the covariance function (CF) can be exactly recovered from its
discrete samples, as long as the sampling rate fs = 1/Ts is
equal or greater than the Nyquist limit (fs ≥ 2fm). On the
other hand, the SMs relate easily with the CF derivatives at
τ = 0, which are also given by a linear combinations of the
CF samples. Accordingly, the name bandlimited (BL) will be
used to designate the present approach.

In the PP approach the first and the second CF derivatives
are replaced by discrete approximations based on the CF at lags
τ = 0, 1, 2 [7]. Therefore, the PP method can be viewed as an
approximation of the BL method.

The simple line of attack we are proposing seems not to be
fully explored in the literature. To our knowledge, only the
work described in [4], in the field of ultrasound blood velocity
measurements, explores the bandlimited concept. However,
their approach and methodology diverge from the one herein
developed.

II. Problem Formulation

Let the signal backsattered by the meteorological clutter,
in a given resolution volume, be represented by the complex

sample from a strictly stationary zero-mean complex Gaussian
random process X = {x(t), t ∈ �}, with covariance function
Rx(τ) = E[x(t + τ)x∗(t)] and PSD Sx(f). These hypothe-
ses find physical justification and have been experimentally
confirmed [16].

The radar transmits pulses periodically at instants iTs, with
index i in the integer set Z; the echo produced by the scatterers
lying in a resolution volume having range r arrives at instants
ti = 2r/c + iTs (c is the speed of light). Consequently, the
SMs associated with the mentioned resolution volume have
to be inferred from samples x(ti), with ti ∈ T = {t : t =
2r/c+ (i− 1)Ts, i ∈ Z}.

The equivalent electronic noise at the receiver input is
modeled by an additive and independent zero-mean complex
Gaussian white process N = {n(t), t ∈ �}, with covari-
ance verifying, for any ti, tj ∈ T , E[n(ti)n(tj)] = 0 and
E[n(ti)n∗(tj)] = N0δi−j (δτ denotes the Kronecker sym-
bol). The resulting signal plus noise process is denoted by
Y = {y(t) = x(t) + n(t), t ∈ �}. Since parameter N0

can be estimated with arbitrary precision (this can be done by
switching off the transmitted pulses), it will be assumed known.

The problem is, then, stated as follows: given the N -
dimensional sample vector Y = [Y1, . . . , YN ]T , with Yi =
y(ti), derive estimators of the spectral moments (assumed to
exist) given by

µk(Sx) ≡

∫ ∞

−∞
fkSx(f) df∫ ∞

−∞
Sx(f) df

k = 1, 2, . . . ,

and of the spectral width

σ(Sx) = [µ2(Sx)− µ2
1(Sx)]1/2.

Estimators of µk(Sx) and σ(Sx) will be denoted by µ̂k(Y) and
by σ̂(Y), respectively.

III. The Bandlimited Approach

We assume that a) Sx(f) is continuous almost everywhere;
b) Sx(f) = 0, f /∈ [−fm, fm] and fm ≤ fs/2; and c)
Sx ∈ L2[−fm, fm].

Hypothesis c) implies (invoking the Schwarz’s inequality)
that

∫ ∞
−∞ |f |kSx(f) df < ∞, which assures that µk exists for

k = 1, 2, . . . and allows writing the SMs as functions of the CF
derivatives at τ = 0:

µk(Sx) =
(2πj)−k

Rx(0)
R(k)

x (0), k = 1, 2, . . . , (1)

where R(k)
x is the k-th derivative of Rx. Given the banlimited

assumption b) jointly with c), it can be shown (a variation of
the the sampling theorem) that

R(k)
x (τ) =

∞∑
i=−∞

Rx(iTs)h(k)(τ − iTs), k = 1, 2, . . . ,

(2)



|f | ≤ fm. Inserting (2) into (1), one is led to

µk(Sx) =
(2πj)−k

r0

∞∑
i=−∞

rih
k
i , k = 1, 2, . . . , (3)

with ri = Rx(iTs) and hk
i = h(k)(−iTs) for i ∈ Z.

Assume that for each k = 1, 2, . . ., given a positive number
εk, there exists an integerMk such that

1
(2π)k

∑
|i|>Mk

|hk
i | < εk.

Under these conditions, the error magnitude between µk and
sum (3) truncated to |i| ≤Mk is smaller than εk (notice that the
nonnegative nature of {ri, i ∈ Z} implies that |ri/r0| ≤ 1).
In what follows we consider that εk is negligible comparing
with the estimation error and denote the k-th SM as the sum
(3) truncated toMk.

The invariance principle of ML estimation [17] states that
if g(θ) : Θ → Φ is a function from Θ onto a subset Φ of

�n1 with n1 ≤ N , then g(θ̂
ml
) is the ML estimate of g(θ).

By applying this principle to the truncated version of (3), we
obtain ML estimates of the SMs given by

µ̂ml
k =

(2πj)−k

r̂ml
0

Mk∑
i=−Mk

r̂ml
i h

k
i , k = 1, 2, . . . (4)

The same set of concepts applies equally to the ML spectral
width estimator. Hence,

σ̂ml = [µ̂ml
2 − (µ̂ml

1 )2]1/2. (5)

Expressions (4) and (5) are exact ML estimates (under the
banlimited and negligible εk assumptions). They are simple
functions of ML sequences {r̂ml

i , i = 0, 1, . . . ,Mk}.

A. The Interpolation Filter

The vanishing rate of coefficients hk
i should be as large

as possible in order to assure a negligible truncation error,
with Mk being as low as possible. In case of fs = 2fm
(Nyquit rate), there is no alternative to the ideal low pass
filter H(f) = Ts rect(f/fs). However, if the sampling rate is
greater than the Nyquist rate (fs > 2fm), then the vanishing
rate of coefficients hk

i can be significantly increased. This
is achieved by choosing an interpolation filter H(f) with a
finite rolloff rate within the interval [fm, fs − fm] of length
(2fm − fs) ≡ ρ(fs/2). In this work we have chosen H(f)
to be the raised cosine filter with a rolloff factor ρ, as it is
used in digital transmission with the purpose of minimizing the
intersymbol interference [18].

The impulse response of the raised cosine filter is

h(τ) = Ts
sin(πfsτ)
(πfsτ)

cos(πfsρτ)
1− 4ρ2τ2

.
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Figure 1: Upper bound interpolation error associated to interpola-

tion coefficients h1
i . Parameter ρ is the rolloff factor of interpolation

the filter.

If ρ > 0, the vanishing rate of coefficients hk
i is of order

O(1/τ3) as opposed to O(1/τ) for ρ = 0. Fig. 1 plots the
upper bound (

∑
|i|≥Mk

|h1i |) for different values of the rolloff
factor ρ. For example, if ρ = 0.2, which demands a sampling
rate 1.25 above the Nyquist rate, the value M1 = 7 leads to
ε1 < 0.01. In the case of h2i , the same valueM1 = 7 leads to
ε1 < 0.0025.

B. Computing the Estimate

Under weak conditions, the estimates given by (4) and (5),
are best asymptotically normal [19]. Despite the goodness of
ML estimates, they have a degree of complexity incompatible
with weather radar requirements, whatever the technique used
to compute {r̂ml

k , k = 0, 1, . . . ,Mk}. Therefore, considering
the formal structure of ML estimators (4) and (5), it seems
reasonable to analyze the properties of

µ̂k =
(2πj)−k

r̂0

Mk∑
i=−Mk

r̂ih
k
i , k = 1, 2, . . . (6)

σ̂ = [µ̂2 − (µ̂1)2]1/2, (7)

where {r̂k, k = 0, 1, . . . ,Mk} is a sequence of unbiased sample
covariance estimates. Given the sample vector Y, of size
N > Mk, r̂i is given by

r̂i ≡ 1
N − |i|

N−|i|∑
n=0

Yn+iY
∗
n − δiN0 (8)

= tr{JiYYH} − δiN0 i = 1, . . . ,Mk, (9)

with tr{·} being the trace operator, (·)H meaning transpose
conjugate, Ji a null matrix except for the i-th diagonal
where its entries are set to (N − |i|)−1. For negative in-
dices we have r̂−i ≡ r̂∗i . Notice that definition (9) is valid for
i = −Mk, . . . , 0, . . . ,Mk. Since the number Mk of sample
covariances needed to determine the SMs is moderate (almost
surely inferior to 10), the sequence {r̂i, i = 0, . . . ,Mk} can be



by inverting the periodogram, which demands, approximately,
N ln2N complex floating point multiplications.

As a last remark, we note that the even nature of h(τ) and
the Hermitian property r̂−i = r̂∗i allow to write

µ̂k =
(
j

2π

)k 1
r̂0

{
2

Mk∑
i=1

Im[r̂i]hk
i

}
k = 1, 3, . . .

µ̂k =
(
j

2π

)k 1
r̂0

{
r̂0h

k
0 + 2

Mk∑
i=1

Re[r̂i]hk
i

}
k = 2, 4, . . . ,

meaning that even SMs depend only on Re[r̂i] and odd SMs
depend only on Im[r̂i].

IV. Statistical Properties and Numerical Exam-
ples

The statistical characterization of µ̂k, for k = 1, 2, . . . and
of σ̂, given by (6) and (7), is carried out in [19]. The full
extension of the results are out of the scope of this paper. We
simply stress the following main points:

1. estimates µ̂k, for k = 1, 2, . . . are asymptotically unbi-
ased. Namely, E[µ̂k − µk] = O(N)

2. for CFs with linear phase (equivalently, having sym-
metric PSD with respect to µ1), estimates µ̂k, for
k = 1, 2, . . ., are unbiased

3. estimate σ̂ is asymptotically unbiased. Namely, E[µ̂k −
µk] = O(N)

4. estimates µ̂k, for k = 1, 2, . . . and σ̂ are best asymptoti-
cally normal.

Given a generic spectral shape, the proposed set of estimators
are asymptotically unbiased. ForN = 32 (a typical sample size
in weather radar) and for σ ≥ 0.01, they exhibit negligible bias
[19]. This is a great advantage over the PP and PB estimators,
given that they are not uniformly unbiased.

Fig. 2 plots the standard deviations of µ̂1 (part a) and σ̂ (part
b), assuming Gaussian shaped spectrum, sample size N = 32,
and sampling rate fs = 1. The Cramer-Rao bound is also
plotted. We note that the estimate µ̂1 is efficient, at least for
σ ∈ [0.01, 0.15] and for SNR∈ [0.5, 100]. The estimate σ̂ is
also efficient for SNR= 3 dB. For higher signal to noise ratios,
and low spectral widths, the relative variance of σ̂ increases
slightly.

The solid lines in Fig. 3 plot (in percentage) the asymptotic
bias of the PP mean frequency (part a) and spectral width (part
b) estimates, normalized by fs. The coordinate γ parametrizes
the PSD according to

Sx(f, γ) =
8

4 + γ
[
rect(2f) + γ rect(8(f − 0.3125))

]
.

(10)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

1

2

3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

5

10

15

20

σ 

σ 

100    Var[σ] 
 

100   Var[µ1] 

CRB 

CRB 
SNR = 20 dB 

SNR = 3 dB 

SNR = 20 dB 

SNR = 3 dB 

^ 

^ 

b) 

a) 

Figure 2: Standard deviations of mean frequency and spectral width

estimators, for a Gaussian shaped spectrum.

By varying γ, a wide set of situations is modelled: for
γ = 0 and γ = ∞, we have Sx(f, 0) = 2rect(2f) and
Sx(f,∞) = 8rect(8(f − 0.3125)), respectively; these corre-
sponds (assuming fs = 1) to symmetric PSDs having large and
moderate spectral widths, respectively. For intermediate values
of γ, Sx(f, γ) exhibits non-null skewness, whose maximum
occurs in the neighborhood of γ = 6.

The star and diamond symbols, in Fig. 3, are sample
bias estimates based on 20 independent runs (sample size is
N = 64). Despite the low number of independent runs, it is
clear that both PP estimates are highly biased compared with
the BL ones, which seem not to be biased (as far as it can be
concluded from such a small number of independent runs).

V. Conclusions

A new nonparametric technique for spectral moments es-
timation was proposed. By assuming that the power spectral
density function is banlimited, the exact maximum likelihood
estimator of the spectral moments was derived. This estimator
is a simple function of the maximum likelihood covariance
estimate sequence. Replacing this sequence by the sample
covariance, a suboptimal spectral moment estimator, suitable
to weather radar applications, was also obtained. It exhibits
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Figure 3: PP and BL bias comparison.

the following features: (1) unbiased for symmetric spectra;
(2) asymptotically unbiased for general shaped spectra; (3)
consistent; (4) asymptotically efficient. In the case of Gaussian
shaped spectrum and a sample size as low as 32, the mean
velocity estimate has minimum variance for the typical signal
to noise ratios and spectral widths used in weather radar. The
spectral width also reaches minimum variance for low signal
to noise ratios.

Compared with the pulse pair and the periodogram based
estimates, the proposed approach exhibits a negligible bias and
for generic shaped spectra the total error (bias plus standard
deviation) is consistently smaller.
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