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Abstract

The paper proposes a restoration method for speckled images gen-
erated by coherent imaging systems (e.g., synthetic aperture radar,
synthetic aperture sonar, ultrasound imaging, and laser imaging).
These systems are invariably affected byspeckle noiseand there-
fore restoration/filtering of the mean backsattered signal (backs-
acttering coefficient) is often necessary. The approach is Bayesian:
the observed image is assumed to be a realization of a random
field built upon the physical mechanism of image generation;
the backscattering coefficient image is modelled by acompound
Gauss-Markov random fieldwhich enforces smoothness on homo-
geneous regions while preserving discontinuities between neigh-
boring regions. Themaximum a posteriori probability(MAP)
criterion is adopted. Anexpectation maximizationtype iterative
scheme embeded in a a continuation algorithm is used to compute
the MAP solution. Application examples performed on radar real
and synthetic data are presented.
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1 Introduction

Coherent imaging systems are designed aiming at the acquisition
of the scenecomplex reflectivity. They are linear systems whose
output is given by the convolution between its coherentpoint
spread function(PSF) and the scene complex reflectivity. Exam-
ples aresynthetic aperture radar(SAR),synthetic aperture sonar
(SAS),ultrasound imaging, and laser imaging. The complex re-
flectivity originated in a givenresolution cellis composed by the
contributions of all individual scatterers lying in that cell. These
contributions interfere randomly in a destructive or constructive
manner, according to the spatial configuration of the scatterers.
This random fluctuation is termed (speckle noise); its statistical
properties has been addressed in several references [1], [2], [3].
Assuming that the surface being illuminated is rough compared to
the wavelength, that there are no strong specular reflectors, and
that there is a large number of scatterers per resolution cell, then
the squared amplitude (intensity) of the complex reflectivity is ex-
ponentially distributed; the scenario just described, termedfully
developed speckle, leads to highly noisy intensity images: thesig-
nal to noise ratio(SNR), defined as the square of the ratio between
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the intensity mean value (backscatering coefficient) and the inten-
sity variance, is one. The granular appearance of intensity images
is due to this very low SNR.

Most applications involving coherent systems data rely on the
mean intensity image (backscattering coefficient image). In view
of the rationale above presented, there is need for applying speckle
reduction/restoration techniques to intensity data. A common ap-
proach consists in averaging independent observations of the same
pixel, which in the case of SAR systems is calledmulti-look. This
term stems from the fact that each independent sample is gener-
ated by a different segment of the SAR array. Independently of
the system, an image formed by the averaging ofm independent
samples will herein be termed anm-look image. For fully de-
veloped speckle, the SNR of anm-look image ism. However,
increasing the number of independent samples results in reduction
of spatial resolution, being necessary to resort to spatial smoothing
techniques. The basic idea underlying these techniques is that of
applying nonuniform smoothness in such a way that homogeneous
image regions, in a statistical sense, are highly smooth, while dis-
continuities are preserved [4], [5], [6].

In recent years a significant research activity has been devoted
to the development of speckle reduction techniques, or, equiva-
lently, to the mean backscattering coefficient estimation. These
techniques take the form of image restoration [7], [8], edge detec-
tion [9], or image segmentation algorithms [3], [10], [11], [12]. A
common assumption is that images are locally smooth. This be-
havior has been modeled mainly byad hoctechniques [7], or by
Markov random fields[3], [10], [11], [12].

The present approach is Bayesian:

• the observed image, given the backscattering coefficients,
is assumed to be a realization of a random field taking into
account the statistics of image reflectivity;

• the set of backscattering coefficients associated to the image
pixels is assumed to bepiecewise smooth, and modelled as a
random field with acompound Gauss-Markov random field
(CGMRF) prior [5], [13].

The piecewise smoothness assumption makes sense in many
situations: e.g., SAR images of agricultural landscapes, echogra-
phy of the human body, etc.

To our knowledge, modeling the backscattering coefficient im-
age with a CGMRF has not yet been addressed in the speckled
image restoration context. and Tiago Silva
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Figure 1: Relative positions of grids for thef , v, andh fields.

2 Proposed Approach

Assume that images are defined in theN × N rectangular lattice
ZN = {(i, j), i, j = 1, . . . , N}. DefineF = {Fij} andG =
{Gij}, with (i, j) ∈ ZN as the random fields associated to the
backscattering coefficient image and the observed intensity image,
respectively. Lowercase letters will denote the values assumed by
the the random filds as well as its realizations. For compactness,
the probability density of the generic fieldX, px(X = x), or of
the generic random variableX, px(X = x), will be denoted by
p(x) and p(x), respectively.

Besides fieldsF andG, it is assumed the existence of another
field, L = {H,V}, with H = {Hij} andV = {Vij}, signaling
horizontal and vertical discontinuities. VariablesVij andHij are
binary, taking value 1 if a discontinuity is present and 0 otherwise.
The fieldL also termedline field[5] serves the purpose of avoiding
edges to be smoothed out during the restoration of fieldF. Fig. 1
schematizes the spatial arrangement ofF andL.

The present work aims at the estimation of the backscattering
coefficient,F, and the line field,L, from the observed imageG.
Since our approach is Bayesian it is model-based, therefore not
only the the image generation mechanismp(g|f , l), but also the
prior densityp(f , l), which captures the model, must be specified.

2.1 Image Generation Mechanism

Under the fully developed speckle hypothesis, the complex am-
plitude x = xr + jxi (inphase and quadrature components) of
the backscattered field, at each pixel, is circularly symmetric and
Gaussian [10]. Thus

p(x|f) =
1

πf2
e
− |x|2

f2 , (1)

wheref2 := E[|x|2] is the backscattering coefficient of the re-
ferred resolution cell. For intensity or power images the data
is in the form of square magnitude of the complex components,
g = |xr + jxi|2. Random variableG is therefore the exponen-
tially distributed:

p(g|f) =
1
f2

e
− g

f2 . (2)

For anm-look image,G is the average ofm independent exponen-
tially distributed random variables, thus having a gamma density
[14],

p(g|f) =
1

Γ(M)

(
f2

M

)−M

gM−1 exp
(
−gM

f2

)
, (3)

with E[g|f ] = f2 andσ2 [g|f ] = f4/M .
It is herein assumed that the components ofg givenf are inde-

pendent. Hence

p(g|f) =
∏

ij∈ZN

p(gij |fij). (4)

The conditional independence assumption is valid if the resolution
cells associated to any pair of pixels are disjoint. This is only true
if the size of the imaging system PSF is smaller than the corre-
sponding interpixel distance. This is approximately true in most
acquisition systems. Otherwise, neighboring data would be ex-
tremely correlated adding no information.

2.2 Prior Model

Imagef is assumed to bepiecewise smooth. This makes sense
whenever the scene is made of smooth regions, concerning the
backscattering coefficient.Gauss-Markov random fields[15] are
both mathematically and computationally suitable for representing
local interactions, and particularly continuity between neighboring
pixels. However, the continuity constraint must be discarded for
those pixels near the discontinuities. For this purpose we take the
first ordernoncausal CGMRF

p(f |l) ∝ exp



−

µ

2

∑

ij

(∆h
ij)

2v̄ij + (∆v
ij)

2h̄ij



 , (5)

wherev̄ij := (1 − vij), h̄ij := (1 − hij), ∆h
ij := (fij − fi,j−1),

∆v
ij := (fij − fi−1,j), andµ−1 has the meaning of the variance

of the increments∆h
ij and∆v

ij . Notice that continuity constraint
between pixels(i, j) and (i, j − 1) is removed if variablevij is
set to one; the same is true concerning horizontal lines. Model (5)
is not, however, normalizable and therefore it is not a probability
density function. To solve this problem, the following prior was
proposed in [13]:

p(f |l) =
1

Z(l)
e
−µ

2

∑
ij

ω(∆h
ij)

2v̄ij+ω(∆v
ij)

2h̄ij+(1−4ω))f2
ij , (6)

whereω is the discontinuity smoothness parameter, which should
be chosen so as toω < 1/4, andZ(l) is a normalizing constant
depending onl, termedpartition function. For values ofω very
close to1/4 the third term of (6) affects very little the result, yet
leads to an integrable priorp(f |l).

Apart a constant, the inverse of the partition functionZ(l) is
given by the determinant of theN2 ×N2-matrix associated to the
quadratic form present in (6). This is an unbearable task due to
the typically huge size of the matrix involved and also due to its ir-
regularity associated to the particular discontinuity pattern. To cir-
cumvent the difficulty therein, the densityp(f |l) is replaced by the
Besag’s pseudolikelihood approximation [15]. DefinigfNij :=
{fi,j−1, fi,j+1, fi−1,j , fi+1,j}, lNij := {hi,j , vi,j , hi+1,j , vi,j+1},
f̄ij := h̄ijfi−1,j + h̄i+1,jfi+1,j + v̄ijfi,j−1 + v̄i,j+1fi,j+1, and

ηij := λ2
ijµωf̄ij (7)

λ2
ij :=

1
µ[1− ω(vij + vi,j+1 + hij + hi+1,j)]

, (8)



the pseudolikelihood approximation is written as (see [16])

p(f |l) '
∏

ij

p(fi,j |fNi,j
, lNi,j

)

=
∏

ij

1√
2πλij

exp

{
− 1

2λ2
ij

(fij − ηij)2
}

(9)

=
e
−µ

∑
ij

ω(∆h
ij)

2v̄ij+ω(∆v
ij)

2h̄ij+
1
2 (1−4ω))f2

ij

∏
ij

√
2πλij

,(10)

where expression (10) is obtained from (9) after a simple but
lengthy manipulation.

The probabilityp(l) is chosen, as in theweak membrane[4]
model, to add a penalty to each discontinuity signaled:

p(l) =
1

Zα
e−α‖l‖, α > 0, (11)

where||l|| := ∑
ij(vij + hij). Prior (11) is only a function of the

number of discontinuities signaled.

2.3 Joint Density

Invoking the Bayes rule, and noting thatp(g|f , l) = p(g|f), we
obtain the joint probability density function of(f , l,g) as

p(f , l,g) = p(g|f)p(f |l)p(l). (12)

Replacing expressions (3), (10), and (11) in (12), the joint dis-
tribution of f , l conditioned ong, is then given by

p(f , l|g) =
1
Z

e−U(f ,l|g), (13)

where

−U(f , l|g) = (14)

− 2M log fij − Mgij

f2
ij

− µ
∑

ij

ωv̄ij(∆h
ij)

2 + ωh̄ij(∆v
ij)

2 +
1
2
(1− 4ω)f2

ij

−
∑

ij

log λij − log Zα − α||l||+ cte. (15)
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3 Computing the MAP solution

Themaximum a posteriori probability(MAP) criterion is adopted
for estimating bothf andl. Accordingly

(f̂ , l̂)MAP = arg max
f ,l

p(f , l|g). (16)

Computing the MAP solution leads to a huge non-convex opti-
mization problem, involving continous and discrete variables, with
unbearable computation burden. Instead of determining exactly
(f̂ , l̂)MAP , we propose a continuation method which although not

yielding the global maximum ofp(f , l|g), delivers nearly optimum
estimates with a feasible computational load. Aiming at this goal,
define

p(f , l|g, β) =
1

Z(β)
e−βU(f ,l|g). (17)

Under a statistical physical interpretation, parameterβ is the
inverse of the temperature (β = 1/T ); this parameter controls
the prominence of the maxima of (17): whenβ → 0, all config-
urations of(f , l) are equiproblable; whenβ → ∞, the absolute
maxima becomes progressively more marked, and in limit the set
of the absolute maxima have probability one.

Annealingalgorithms, be it stochastic or deterministic, exploit
this behaviour to establish continuation methods in which the tem-
perature plays the role of continuation parameter.

The proposed continuation scheme evaluates, for an increas-
ing sequenceβt, with t = 1, . . . , tm, the maximumf̂ (t) of
p(f , l̂(t−1)|g), with respect tof , follwed by themean line field
l̂(t) = Eβt [l|̂f (t),g] (symbolEβ denotes the mean value operator
computed according to density (17)). Based on this operation the
algorithm is termedexpectation maximization annealing(EMA).

EMA Algorithm

Initialization: setĥ(0)
ij = v̂

(0)
ij := 0.5, t = 1, β0, a, m

DO

step 1: f̂ (t) = arg max
f

p(f , l̂(t−1)|g) (18)

step 2: l̂(t) = Eβt [l|̂f (t),g] (19)

step 3: βt+1 = aβt (20)

While t ≤ m

Due to the the already pointed out behaviour of (17), it follows
that

Eβ [l|f ,g] → arg max
l

p(f , l|g), β →∞. (21)

Therefore the stationaty points of the EMA algorithm are, at least,
local maxima ofp(f , l|g); the quality of the maxima depends on
the schedule ofβt.

Maximization (18) is implemented by theiterated conditional
modes(ICM) method [15]. This is an coordinate-wise ascent tech-
nique, that maximizes the posterior distribution with respect to
each individual component. After sweeping all image, the pro-
cedure is repeated until no noticiable energy increments are ob-
tained.

The sationary points of (15), with respect tofij , are zeros of
the fourth order polynomial

−µ
(
(1− 4ω) + 2ω(h̄ij + h̄i+1,j + v̄ij + v̄i,j+1)

)
f4

ij

+2µωf̄ijf
3
ij − 2Mfij + 2Mgij = 0. (22)

For each pixel(i, j) the solution of equation (22) is chosen to be
the one root that maximizesp(f , l̂(t−1)|g).



Step (19) of the EMA algorithm is similar to the equivalent step
of mean field algoritm(MFA); using the rationale proposed in [6],
one obtains

vij := Eβ [vij |f ,g] ' 1

1 + eβ{αv
ij
−µω(∆h

i,j
)2} , (23)

whereαv
ij = α + 1

2 log tvij and (see [16])

tvij =
[1− ω(vi,j−1 + hi,j−1 + hi+1,j−1)]

[1− ω(1 + vi,j−1 + hi,j−1 + hi+1,j−1)]

× [1− ω(vi,j+1 + hij + hi+1,j)]
[1− ω(1 + vi,j+1 + hij + hi+1,j)]

. (24)

A similar result is obtained for̄hij := Eβ [hij |f ,g], replacingh by
v and vice versa (23) and (24).

The EMA algorithm differs from the MFA one in the step (19):
while the latter evaluates mean valueEβt [f |̂l(t),g], the former
maximizesp(f , l̂(t)|g) with respect tof . For Gaussian observa-
tion models both estimates are equal. This is not, however, the
present case, since the obsevation model is not Gaussian.

Although not explicitly, functionp(f , l|g) depends on parame-
tersµ andα. The maximum likelihood estimate ofµ is

µ̂ML =
N2

2
∑

ij ωv̄ij(∆h
ij)2 + ωh̄ij(∆v

ij)2 + 1
2 (1− 4ω)f2

ij

.

(25)
Therefore, ifµ is unknown, it can be iteratively evaluated when
implementing the EMA.

The setting of parameterα, depends on the tresholding above
which discontinuities are signaled. This can be understood from
expression (23), which for hight values ofβ leads to the following
decision rule:

vij =





1, (fij − fi,j−1)2 >
α+ 1

2 log tv
ij

µω

0, (fij − fi,j−1)2 <
α+ 1

2 log tv
ij

µω .
(26)

Assume that the discontinuities from whichtij depends are all
set to zero. In this case we have1

2 log tvij = 0.29, which tipically
verifiesα À log tvij ; a vertical discontinuity is therefore signaled

if ∆h
ij >

√
α/(µω). If some discontinuities from whichtij de-

pends are set to one, the treshold
α+ 1

2 log tv
ij

µω increases, preventing
an over segmented image, namely the creation of double edges.

and Tiago Silva

4 Experimental Results

In this section we present restoration results applied to synthetic
and real data. The EMA algoritm is parametrized withm = 10
(number of iterations), anda = 1.259 (increasing rate ofβ). Pa-
rameterµ is estimated according to (25).

Fig. 2 shows a restoration example of a synthetic image. The
different image parts show:

(a,b) the original parameter image comprising 4 constant regions;
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Figure 2: Synthetic image: a) and b) original image; c) and d)
square root of noisy images generated for 3-looks; e) and f) re-
stored image. In e) the resulting segmentation is superimposed.

(c,d) square root of the gamma image generated using the previ-
ous image as parameter withM = 3 (number of looks);

(e,f) the restored image.

Both images are showed as colormaps and surfaces for better per-
ception. In the estimated image, the estimated discontinuities are
overimposed. The estimated image exhibits nearly perfectly pre-
served edges. Within each region the image is smooth as the orig-
inal image and the estimated values are very close to the original.
Although the estimation was based on a very noisy image (signal-
to-noise ratioof 4.7 dB) the results were expectable due to the fact
that the image complies totaly with the CGMRF prior.

Fig. 3(a) shows a SAR image of the agricultural landscape of
Flevoland region in northern Netherlands. The image was cap-
tured in Radarsat’s standard mode (pixel spacing' 12.5m) and has
four-looks. Part (b) displays the restored image with the line field
superimposed. The EMA algorithm performs very well, as it can
be perceived from the plot shown in part (c) of Fig. 3: the squared
root of intensity data jointly with the restored image are plotted for
column 300 (image has size512 × 512). The algorithm correctly
smooth data within homogeneous regions, preserving discontinu-
ities between neighboring regions. and Tiago Silva

5 Concluding Remarks

A new method for edge-preserving restoration of coherent images
was presented. The knowledge of the statistics of the speckled im-
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Figure 3: Radarsat SAR image of agricultural fields in the
Flevoland, Netherlands: a) original image; b) estimated image
consideringM = 4. The resulting segmentation is superimposed
on both a) and b); estimated values along a straight line.

ages was fully taken into account through the observation model.
The prior, acompund Gauss Markov random field, was used to
tackle images exhibiting piecewise homogenous regions.

Restoration examples, comprising very noisy synthetic and
SAR images, suggest the adequacy of the proposed methodology.
Estimation of the model’s parameters, will be further improved in
order to render the algorithm more robust and automatic.
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