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Abstract the intensity mean value (backscatering coefficient) and the inten-
sity variance, is one. The granular appearance of intensity images
The paper proposes a restoration method for speckled images gsrdue to this very low SNR.
erated by coherent imaging systems (e.g., synthetic aperture radardViost applications involving coherent systems data rely on the
synthetic aperture sonar, ultrasound imaging, and laser imaging)ean intensity image (backscattering coefficient image). In view
These systems are invariably affecteddpeckle noisand there- of the rationale above presented, there is need for applying speckle
fore restoration/filtering of the mean backsattered sighatks- reduction/restoration techniques to intensity data. A common ap-
acttering coefficientis often necessary. The approach is Bayesiamroach consists in averaging independent observations of the sam
the observed image is assumed to be a realization of a randpirel, which in the case of SAR systems is caltedlti-look This
field built upon the physical mechanism of image generatiotierm stems from the fact that each independent sample is gener-
the backscattering coefficient image is modelled gompound ated by a different segment of the SAR array. Independently of
Gauss-Markov random fielahich enforces smoothness on homothe system, an image formed by the averagingnahdependent
geneous regions while preserving discontinuities between neigtamples will herein be termed an-look image. For fully de-
boring regions. Themaximum a posteriori probabilityMAP) veloped speckle, the SNR of an-look image ism. However,
criterion is adopted. Amxpectation maximizatiotype iterative increasing the number of independent samples results in reduction
scheme embeded in a a continuation algorithm is used to compuofespatial resolution, being necessary to resort to spatial smoothing
the MAP solution. Application examples performed on radar redéchniques. The basic idea underlying these techniques is that of
and synthetic data are presented. applying nonuniform smoothness in such a way that homogeneous
and Tiago Silva image regions, in a statistical sense, are highly smooth, while dis-
continuities are preserved [4], [5], [6].
In recent years a significant research activity has been devoted
1 Introduction to the development of speckle reduction techniques, or, equiva-
lently, to the mean backscattering coefficient estimation. These
;&qhniques take the form of image restoration [7], [8], edge detec-
tion [9], or image segmentation algorithms [3], [10], [11], [12]. A
common assumption is that images are locally smooth. This be-
havior has been modeled mainly by hoctechniques [7], or by
Markov random field§3], [10], [11], [12].

Coherent imaging systems are designed aiming at the acquisit
of the sceneomplex reflectivity They are linear systems whose
output is given by the convolution between its coherpaint
spread functioPSF) and the scene complex reflectivity. Exam
ples aresynthetic aperture radaSAR), synthetic aperture sonar
(SAS), ultrasound imagingand laser imaging. The complex re-
flectivity originated in a givemesolution cellis composed by the ~ The present approach is Bayesian:
contributions of all individual scatterers lying in that cell. These
contributions interfere randomly in a destructive or constructive
manner, according to the spatial configuration of the scatterers.
This random fluctuation is termedgeckle noisg its statistical
properties has been addressed in several references [1], [2], [3]. e the set of backscattering coefficients associated to the image
Assuming that the surface being illuminated is rough comparedto  pixels is assumed to h@ecewise smootland modelled as a
the wavelength, that there are no strong specular reflectors, and random field with &sompound Gauss-Markov random field
that there is a large number of scatterers per resolution cell, then (CGMRF) prior [5], [13].

the squared amplitudénfensity of the complex reflectivity is ex-
ponentially distributed; the scenario just described, terifody
developed speckléeads to highly noisy intensity images: thig-
nal to noise ratid SNR), defined as the square of the ratio betwe

e the observed image, given the backscattering coefficients,
is assumed to be a realization of a random field taking into
account the statistics of image reflectivity;

The piecewise smoothness assumption makes sense in man
situations: e.g., SAR images of agricultural landscapes, echogra-
gphy of the human body, etc.
To our knowledge, modeling the backscattering coefficient im-
“This work was suppoted by Portuguese PRAXIS XX program, under proje@d€ With a CGMRF has not yet been addressed in the speckled
2/2.1.TIT/1580/95 image restoration context. and Tiago Silva




J’ with Elgf] = f2 ando? [g|f] = f*/M.

° | ° ° It is herein assumed that the componentg givenf are inde-
2—\ h pendent. Hence
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V_\_—-Vij 4elN
) | o | o The conditional independence assumption is valid if the resolution

cells associated to any pair of pixels are disjoint. This is only true
if the size of the imaging system PSF is smaller than the corre-
sponding interpixel distance. This is approximately true in most
acquisition systems. Otherwise, neighboring data would be ex-
2 Proposed Approach tremely correlated adding no information.

Figure 1: Relative positions of grids for tifiev, andh fields.

Assume t_hgt ima_ges are defined in mex N rectangular lattice 2 o Prior Model

Zy ={(,4), 4,7 = 1,...,N}. DefineF = {F;;} andG =

{Gi;}, with (i,7) € Zx as the random fields associated to thémagef is assumed to bpiecewise smoothThis makes sense

backscattering coefficientimage and the observed intensity imagé)enever the scene is made of smooth regions, concerning the

respectively. Lowercase letters will denote the values assumed lpgckscattering coefficienGauss-Markov random field45] are

the the random filds as well as its realizations. For compactne$sth mathematically and computationally suitable for representing

the probability density of the generic fieX, p.(X = x), or of localinteractions, and particularly continuity between neighboring

the generic random variabl®, p,(X = z), will be denoted by pixels. However, the continuity constraint must be discarded for

p(x) and p(x), respectively. those pixels near the discontinuities. For this purpose we take the
Besides field¥ andG, it is assumed the existence of anothefirst ordernoncausal CGMRF

field, L = {H, V}, with H = {H;;} andV = {V,;}, signaling

horizontal and vertical discontinuities. Variablgs and I;; are L hA2— v \2T

binary, taking value 1 if a discontinuity is present and 0 otherwise. p(El) ocexp g =5 . (A5)70ij + (A5) hij ¢, (5)

The fieldL also termedine field[5] serves the purpose of avoiding Y

edges to be smoothed out during the restoration of hel&ig. 1 whered;; = (1 — vij), hij := (1 — i), AL = (fij — fii-1)
1] 1)y Ty -— J ij T 1] 2,7—1)

schematizes the spatial arrangemeri @ndL.
The present work aims at the estimation of the backscatteri
coefficient,F, and the line fieldL, from the observed imagé&:.

nATJj := (fi; — fi—1;), andp~! has the meaning of the variance
of the increment\. and A?.. Notice that continuity constraint
Since our approach is Bayesian it is model-based, therefore MGWEEN Pixeldi, j) and (i, j — 1) is removed if variable;; is
only the the image generation mechanistg|f, 1), but also the set to one; the same is true concerning horizontal lines. Model (5)
prior densityp(F, 1), which captures the model’m’ust be specifieaj.s not, however, normalizable and therefore it is not a probability
e ’ density function. To solve this problem, the following prior was

. . proposed in [13]:
2.1 Image Generation Mechanism .

—-£ ..w(A?j)zfiiJ+w(A?j)2ﬁij+(1*4w))fi2j

Under the fully developed speckle hypothesis, the complex am- p(fl) = 72(1)6 B2 )

plitude x = z, + jx; (inphase and quadrature components) of _ _ o _
the backscattered field, at each pixel, is circularly symmetric aivédherew is the discontinuity smoothness parameter, which should

Gaussian [10]. Thus be chosen so as to < 1/4, andZ(1) is a normalizing constant
1 2 depending o, termedpartition function For values ofv very
p(z|f) = —5¢ 77, (1) close tol/4 the third term of (6) affects very little the result, yet
f2 . .
leads to an integrable prigx f|I).

where f? := El[|z|?] is the backscattering coefficient of the re- Apart a constant, the inverse of the partition functié) is
ferred resolution cell. For intensity or power images the da@iven by the determinant of th¥ x N*-matrix associated to the
is in the form of square magnitude of the Comp|ex Componen@padratlc form present In (6) This is an unbearable task due to

g = |z, + jz;|>. Random variableZ is therefore the exponen- the typically huge size of the matrix involved and also due to its ir-
tially distributed: regularity associated to the particular discontinuity pattern. To cir-

_ 1 -4 @ cumvent the difficulty therein, the densijtyf|1) is replaced by the
plglf) = FEA Besag's pseudolikelihood approximation [15]. Defirfig,, :=
For anm-look image G is the average of, independent exponen- Lfi.j—1s fij+1s fimvjs firrih I, i= {Rigs visgs Rt s vi g s
tially distributed random variables, thus having a gamma densidys -= hijfi—1.j + hiv1jfiv1; + 0ij fij—1 + Vijy1fiz1, and

14 mi = Al 7)

_ 1 f? - M-1 gM 2 1
p(glf) = T(M) <M) g €xp (_fg> ) 3) A= p[l = w(vij +vijy1 + b + i )] ®)




the pseudolikelihood approximation is written as (see [16]) yielding the global maximum qf(f, 1|g), delivers nearly optimum
estimates with a feasible computational load. Aiming at this goal,

p(fl) =~ HP(fi,j|fNi,j7lNi,j) define
_ b suce
= ]I \/271/\ exp{_2>1\2(fij —771‘3‘)2} 9) p(f. g, 5) = Z(3)° . (@7
ij TALj ij

i3 (A (AL R+ b (1-4w)) £, _ Under a statistical physical interpretgtion, parametes the
B ij & ’ Y (10) inverse of the temperaturgd (= 1/7); this parameter controls
I, V21 ’ the prominence of the maxima of (17): whén— 0, all config-
‘ urations of(f, 1) are equiproblable; whed — oo, the absolute
where expression (10) is obtained from (9) after a simple butaxima becomes progressively more marked, and in limit the set

lengthy manipulation. of the absolute maxima have probability one.
The probabilityp(l) is chosen, as in theeak membrang] Annealingalgorithms, be it stochastic or deterministic, exploit
model, to add a penalty to each discontinuity signaled: this behaviour to establish continuation methods in which the tem-
perature plays the role of continuation parameter.
_ Ll inuat -
p(l) = 7€ , a >0, (11) The proposed continuation scheme evaluates, for an increas-
¢ ing sequence?;, with ¢ = 1,...,t,, the maximumf® of
where]|l|| := >, (vij + hi;). Prior (11) is only a function of the p(f,1¢~1)|g), with respect tof, follwed by themean line field
number of discontinuities signaled. 10 = Eg, [1|?(t)7 g] (symbol E; denotes the mean value operator
computed according to density (17)). Based on this operation the
2.3 Joint Density algorithm is termeexpectation maximization annealigMA).

Invoking the Bayes rule, and noting thafg|f,1) = p(g|f), we EMA Algorithm
obtain the joint probability density function ¢f, 1, g) as

Initialization: setﬁl(?) = ﬁg?) =0.5,t=1, By, a,m
p(f,1,8) = p(g[f)p(f|)p(1). (12) | po

Replacing expressions (3), (10), and (11) in (12), the joint dis$
tribution of £, 1 conditioned org, is then given by

stepl: ) =arg mfaxp(f,/l\(t_l)\g) (18)

. step2: 1 = Eg [1f®), g] (19)
p(f1g) = e V0, (13) step3: B = af, (20)
where While t <m
-U(f,llg) = (14) Due to the the already pointed out behaviour of (17), it follows
Mg, that
- Ml Egllit,g] — argmaxp(f,llg),  B—oo.  (21)
- 1
- Z wﬂij(A?j)Q + whij(Afj)z + 5(1 —4w) f, Therefore the stationaty points of the EMA algorithm are, at least,
ij local maxima ofp(f,1|g); the quality of the maxima depends on
_ Zlog/\ij—logZa—oz\|lH+cte. (15) the schedule of;.

ij

Maximization (18) is implemented by thierated conditional
modegICM) method [15]. This is an coordinate-wise ascent tech-
nigue, that maximizes the posterior distribution with respect to

3 Computing the MAP solution each individual component. After sweeping all image, the pro-
cedure is repeated until no noticiable energy increments are ob-

and Tiago Silva

Themaximum a posteriori probabilityfMAP) criterion is adopted t@inéd. _ _
for estimating bothf andl. Accordingly The sationary points of (15), with respect fg, are zeros of
the fourth order polynomial

EDaap = arg maxp(f,1]g). (16) L o .
’ - ((1 — 4(4)) —+ QW(}LZ‘J' —+ hiJrLj + vij + Ui,j+1)) fij
Computing the MAP solution leads to a huge non-convex opti- +2;Mﬁjf§; —2M f;; +2Mg;; =0.  (22)
mization problem, involving continous and discrete variables, with
unbearable computation burden. Instead of determining exacffpr each pixels, j) the solution of equation (22) is chosen to be
(f,1) 1 4P, We propose a continuation method which although ndhe one root that maximizegf, 10~ |g).



Step (19) of the EMA algorithm is similar to the equivalent ste
of mean field algoritn{MFA); using the rationale proposed in [6],
one obtains

100
50
1

i = E i f, ~ 3 23
v J ﬁ[v ]| g] 1 + eﬁ{a;)j_,U«UJ(A?,j)z} ( ) 40
wherea}; = a + 3 logt; and (see [16])
oo - w(uioithijoithivgoa)]
Y 1 —w(l+vj-1+hij—1+ hit1,-1)]
[1 —w(vij+1 + Py + hita5)] (24)

(1 —w(l+vijq1 + R+ hig;)]

A similar result is obtained foli;; := Ej[h;;|f, g], replacingh by
v and vice versa (23) and (24).

The EMA algorithm differs from the MFA one in the step (19):
while the latter evaluates mean vali;, [f|T(t),g], the former
maximizesp(f,1)|g) with respect tof. For Gaussian observa-
tion models both estimates are equal. This is not, however, t
present case, since the obsevation model is not Gaussian.

Although not explicitly, functiorp(f, 1|g) depends on parame-

tersp anda. The maximum likelihood estimate gfis ® f)

N? Figure 2: Synthetic image: a) and b) original image; c¢) and d)
2345 w@ij(A?j)? + wﬁij(A;’j)Q +3(1—4dw)f2 square root of noisy images generated for 3-looks; €) and f) re-
(25) stored image. In e) the resulting segmentation is superimposed.
Therefore, ify is unknown, it can be iteratively evaluated when
implementing the EMA. ) ) ]
The setting of parameter, depends on the tresholding above(C:d) square root of the gamma image generated using the previ-
which discontinuities are signaled. This can be understood from ~ OUS image as parameter witlf = 3 (number of looks);
expression (23), which for hight values @teads to the following

UML =

(e,f) the restored image.

decision rule:
o Both images are showed as colormaps and surfaces for better per
L (fij— fij—1)*> (Hfﬂl%“ ception. In the estimated image, the estimated discontinuities are
Vij = 0, (fij—fis 1)? < a+34logty; (26) overimposed. The estimated image exhibits nearly perfectly pre-
» N TRl po served edges. Within each region the image is smooth as the orig-

inal image and the estimated values are very close to the original.

Assume that the discontinuities from whith depends are alll Although the estimation was based on a very noisy imaigmél-

. o A
set_t_o zero. In thlvs.case we ha%éog ti.ﬂ’ . 0'.29' which t|p|9ally to-noise ratioof 4.7 dB) the results were expectable due to the fact
verifiesa > logt?.; a vertical discontinuity is therefore signaled

o i’ ) o ) that the image complies totaly with the CGMRF prior.
it Ay > v/a/(uw). If some d'scolnt'”'fi't'es from whichy; de- Fig. 3(a) shows a SAR image of the agricultural landscape of
pends are set to one, the tresh&[&% increases, preventing Flevoland region in northern Netherlands. The image was cap-
an over segmented image, namely the creation of double edgedured in Radarsat’s standard mode (pixel spacirif.5m) and has
and Tiago Silva four-looks. Part (b) displays the restored image with the line field
superimposed. The EMA algorithm performs very well, as it can
be perceived from the plot shown in part (c) of Fig. 3: the squared
4 Experimental Results root of intensity data jointly with the restored image are plotted for
column 300 (image has sizd2 x 512). The algorithm correctly
In this section we present restoration results applied to syntheimooth data within homogeneous regions, preserving discontinu-
and real data. The EMA algoritm is parametrized with= 10 ities between neighboring regions. and Tiago Silva
(number of iterations), and = 1.259 (increasing rate off). Pa-
rametery is estimated according to (25). )
Fig. 2 shows a restoration example of a synthetic image. THe Concluding Remarks

different image parts show: ) ] .
A new method for edge-preserving restoration of coherent images

(a,b) the original parameter image comprising 4 constant regionsras presented. The knowledge of the statistics of the speckled im-



ages was fully taken into account through the observation model.
The prior, acompund Gauss Markov random figladtas used to
tackle images exhibiting piecewise homogenous regions.

Restoration examples, comprising very noisy synthetic and
SAR images, suggest the adequacy of the proposed methodology
Estimation of the model’'s parameters, will be further improved in
order to render the algorithm more robust and automatic.
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