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Abstract

The paper proposes a new method for the absolute phase
(not simply modulo-2�) reconstruction in Interferometric
Synthetic Aperture Radar (InSAR) applications, when dis-
continuities are present. By adopting a Bayesian viewpoint,
the proposed approach integrates the absolute phase ob-
servation probabilistic model jointly with its prior knowl-
edge; the observation mechanism takes into account the
joint probability of the InSAR image pair, given the abso-
lute phase; the a priori probability of the absolute phase
is modelled by a Compound Gauss Markov random �eld
(CGMRF) tailored to piecewise smooth absolute phase im-
ages. The maximum a posteriori probability (MAP) crite-
rion is adopted. An iterative scheme embodying stochastic
nonlinear �ltering and iterative conditional modes (ICM)
steps is used to compute the MAP solution. A set of exper-
imental results illustrate the appropriateness of method.

1 Introduction

Synthetic Aperture Radar (SAR) is a coherent system
that produces high resolution images of the electric �eld
backscatterd by the surface being illuminated [1]. SAR im-
ages are typically acquired by a single antenna. By using
two antennas (actually two antennas in single-pass mode,
or one antenna in repeat-pass mode) separated by a base-
line, it becomes possible to interfere the two images in such
a way that the common scene re
ectivity is canceled and
the geometric information contained in the scene topogra-
phy is retained in the phase di�erence. It is the so-called
interferometric synthetic aperture radar (InSAR).

In a SAR system, as in any coherent system, only noisy
versions of the principal phase values (modulo-2�) are avail-
able, as computed from the argument of the received wave.
However, in InSAR applications, the objective is the es-
timation of the absolute phase (phase unwrapping in the
InSAR jargon), and not simply its modulo-2�.

Classical phase unwrapping methods are either of path
following type or of least-squares type (e.g., [2], [3]. In
the path following schemes, phase is unwrapped through
selected image patches. In the presence of discontinuities
or noise, di�erent patches between two points may lead
to di�erent absolute phase di�erences. Heuristic rules are
applied to resolve or mitigate the inconsistencies [2], [4].
Typically, unwrapping methods that do no rely on path
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following cast the problem in the least-squares formalism
[5]. Recently, it has been shown that the least-squares so-
lution to phase unwrapping is equivalent to the solution of
the discretized Poisson equation with Newmann boundary
conditions. This solution can be computed e�ciently by
using fast cosine or Fourier transforms [6]. Due to decorre-
lation (temporal and spatial), no-return or low return areas
(e.g., due to layover phenomena), the modulo-2� phase es-
timates corresponding to those areas might be extremely
biased/noisy. In an attempt to include this information in
the unwrapping procedures, the weighted least-squares ap-
proach has been used [7], taking as weights the correlation
coe�cients. This idea can be extended to discontinuities by
assuming that the correlation coe�cient between two sites
split by a discontinuity is zero.

In a quite di�erent vein, papers [8], [9] have adopted
the Bayesian viewpoint, in addressing absolute phase re-
construction in interferometric applications. The Bayesian
approach supplies a model-based framework suited to de-
scribe the data observation mechanism and its prior knowl-
edge. In this fashion, paper [8] proposes a nonlinear recur-
sive �ltering approach to the absolute phase reconstruction
in interferometric type applications. Paper [9] considers
the InSAR observation model, taking into account not only
the image phase, but also the backscattering coe�cient and
the correlation factor images, which are jointly recovered
from SAR image pairs. Contrarily to the weighted least-
squares approach, the methodology followed in [9] uses the
information conveyed by the correlation coe�cients in a
model-based fashion.

In a way or another, most phase unwrapping algorithms
assume that the phase di�erence between two neighbor sites
varies smoothly (less than � in a deterministic or stochas-
tic sense, depending on the paradigm); based on this prior
knowledge, it is possible, by looking at the neighboring site
phases, to infer the 2� multiple component of the phase of
a given site. However, in situations such as undersampling
in terrains with high fringe rates, abrupt feature/objects,
or the layover phenomena, the smoothness assumption can
not be taken any more. Independently of its origin, phase
discontinuities are the principal source of error in any un-
wrapping algorithm that does not take them into account.

Work [10] proposes a method in which the unwrapped
phase is chosen to minimize a weighted sum of discontinuity
magnitudes. The weights are set close to zero for noisy or
discontinuity regions. In [11], a Markovian approach to
phase unwrapping using a discontinuity model is followed.
The phase unwrapping is cast into a labeling problem; the
labels are the 2� multiples of the phase at each site. Neural



networks, exploiting the structure of discontinuity phase
pattern, are applied in [12].

1.1 Proposed Approach

The paper proposes a two step procedure to absolute phase
estimation in presence of phase discontinuities: (a) deter-
mine the discontinuity �eld; (b) determine the absolute
phase using the discontinuity �eld obtained in step (a). In
this paper, we address only the step (b).

The approach is Bayesian and therefore model-based.
SAR images are described as random �elds whose statis-
tical properties are built upon the physical mechanism of
image generation. This random �eld is parametrized by
the absolute phase. A noncausal �rst order CGMRF is
taken as prior. The CGMRF is suited to piecewise smooth
�elds, and, therefore, to account for discontinuities between
smooth regions.

The MAP estimation criteria is selected. The estimate
is determined by means of a scheme embodying nonlinear
recursive stochastic �ltering and ICM steps.
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2 Observation Model

For a given InSAR geometry, the terrain elevation is ob-
tained from the phase � = �2��1, where �1 and �2 are the
propagation path phases read by the two antennas. Phase
� relates, in a noisy and nonlinear way, with the observed
SAR images (interferometric pair).

Denote x1 and x2 the complex amplitudes (inphase and
quadrature components packed into complex numbers) of
the backscattered �eld read by each antenna at a given
pixel. These amplitudes are given by

x1 = z1e
�j�1 + n1 (1)

x2 = z2e
�j�2 + n2; (2)

where zi, for i = 1; 2, is the complex amplitude originated
by the scatterers illuminated by aperture i, and ni is the
respective electronic noise.

Assuming that the surface being illuminated is rough
compared to the wavelength, that there are no strong specu-
lar re
ectors, and that there are a large number of scatterers
per resolution cell, then the complex amplitude zi are circu-
larly symmetric and Gaussian [13]. Noises ni are indepen-
dent of complex amplitudes zi, and also circularly symmet-
ric and Gaussian. Complex amplitudes z1 and z2 are di�er-
ent due to spatial and temporal decorrelations. The former
is originated by non-overlapping portions or the aperture
regions of each antenna; the latter is originated by scatterer
displacements. We assume that1 E[jz1j

2] = E[jz2j
2] := �

2

and that E[z1z
�

2 ] := ��
2, where � stands for the correlation

factor between z1 and z2, also termed change parameter or
degree of coherence [13]. We assume that � 2 [0; 1], which
is valid whenever the scatterer displacements have an even
distribution.

1For compactness, lowercase latters will denote random variables
and their values as well. Also, the generic probability density func-
tion of the generic random vector x, px(x), or of the generic random
variable,x, px(x), will be denoted by p(x) and p(x), respectively.

De�ning x := [x1 x2]
T , � := E[jz1j

2], E[jn1j
2] := �

2
n, and

assuming that E[jn1j
2] = E[jn2j

2], the probability density
function of x is written as [13]

p(xj�; �; �) =
1

�2jQj
e
�xHQ�1x

; (3)

where Q := E[xxH ] is given by

Q =

�
�
2 + �

2
n ��

2
e
�j�

��
2
e
j�

�
2 + �

2
n

�
: (4)

Developing the quadratic form in (3), one is led to

p(xj�; �; �) = ce
� cos(�� �)

; (5)

where c = c(x; �; �)

� = arg(x�1x2) (6)

� =
2��2jx1x2j

jQj
: (7)

Often, parameters � and � are unknown and must be
jointly estimated with the absolute phase �. This issue
is addressed in [9], where the images formed by those pa-
rameters are modelled as independent noncausal �rst order
Gauss Markov random �elds (GMRF) [14]. Since our main
target in this paper is the determination of � in the pres-
ence of discontinuities, we assume that images � and � are
known. For this reason, parameters � and � will be omitted
from now on.

The formal structure of (5) would be exactly the same if
the observation mechanism was

x = e
j� + n; (8)

with n being complex circular symmetric and Gaussian
noise of variance �, and

� = arg(x) (9)

� =
jxj

�2n

: (10)

Model (8) is adopted in [8], where the absolute phase
reconstruction is addressed under a stochastic nonlinear �l-
tering approach.

Let xij := [x1ij x2ij ]
T denote the random vector of

complex amplitudes associated to the site (i; j) and x :=
fxij ; i; j = 1; : : : ; Ng (we assume without lack of generality
that images are squared), and � = f�ij ; i; j = 1; : : : ; Ng.
Assuming that the components of x are conditionally inde-
pendent, then

p(xj�) =

NY
ij=1

p(xij j�ij): (11)

The conditional independence assumption is valid if the
resolution cells associated to any pair of pixels are disjoint.
Usually this is a good approximation, since the point spread
function (PSF) of the SAR system is only slightly larger
than the corresponding inter-pixel distance [15]. Anyway,
the correlation introduced by the PSF can be modelled by
assuming that the observed vector is y = Bx, where B is
the associated blur matrix.



2.1 Prior Model

Image � is assumed to be piecewise smooth, with abrupt
variations between neighboring regions. This variations
may arise due to undersampling in terrains with high fringe
rates, due to the presence of abrupt feature/objects, or due
to the layover phenomena. Independently of its origin, dis-
continuities of the absolute phase � are the principal source
of error in any unwrapping algorithm that does not take
them into account.

Gauss-Markov random �elds [16] are both mathemati-
cally and computationally suitable for representing local
interactions, and particularly continuity between neighbor-
ing pixels. However, the continuity constraint must be dis-
carded for those pixels near the discontinuities. For this
purpose we take the �rst order noncausal CGMRF

p(�jl) / exp

8<
:��

2

X
ij

(�h
ij)

2�vij + (�v
ij)

2�hij

9=
; ; (12)

where l := fvij ; hijg is the so-called line �eld process, �vij :=

(1 � vij), �hij := (1 � hij), �
h
ij := (�ij � �i;j�1), �

v
ij :=

(�ij � �i�1;j), and �
�1 means the variance of increments

�h
ij and �v

ij . Notice that continuity constraint between

sites (i; j) and (i; j � 1) is removed if variable vij is set to
one; the same is true concerning horizontal lines.

2.2 Posterior Density

Consider that the line �eld process l is known. Invoking the
Bayes rule, and noting that p(xj�; l) = p(xj�), we obtain
the posterior probability density function of �, given (x; l),
as

p(�jx; l) / p(xj�)p(�jl); (13)

where the factors not depending on � where discarded. In-
troducing (5),(11), (12) in (13), one obtains

p(�jx; l) / e

X
ij

�ij cos(�ij � �ij)�
�

2

�
(�h

ij)
2�vij + (�v

ij)
2�hij

�
:

(14)
Since our approach is Bayesian,the posterior distribution

(14) contains all information one needs to compute the ab-

solute phase estimate b�.
3 Estimation Procedure

The MAP criterion is adopted for computing the phase �.
Accordingly

b�MAP = argmax
�

p(�jx; l): (15)

Due to the periodic structure of p(xj�), also termed the
observation factor, computing the MAP solution leads to
a huge non-convex optimization problem, with unberable
computation burdeen. Instead of computing the exact esti-

mate b�MAP , we resort to a suboptimal scheme that delivers
nearly optimum estimates, with a reasonable computational
load.
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Figure 1: Illustration of sequence sn 2 ZN . The crossed
site cannot be the next sequence element.

Let Vs, with s 2 ZN := f(i; j)j i; j = 1; : : : ; Ng, be the
set of neighbors of site s in the Markovian sense: i.e.,

p(�sj�r ; r 6= s; r 2 ZN ) = p(�sj�r; r 2 Vs): (16)

Since we have adopted a noncausal �rst order random
Markov �eld, the neighbors of site (i; j) are all elements
(boundary apart) of the set f(i + 1; j); (i � 1; j); (i; j +
1); (i; j � 1)g that do not have a discontinuity signaled be-
tween them and site (i; j).

De�ne the site sequence sn 2 ZN , with n = 1; 2; : : : ; N2,
and the sets An := fs1; s2; : : : ; sng, where si 2 ZN , and
VAn

:=
Sn

i=1 Vsi , such that

sn+1 =2 An

sn+1 2 VAn
:

(17)

Fig. (1) schematizes a set An and a possible site sn+1.
The crossed site cannot be the next sequence element sn+1,
since it does not belong to VAn

by virtue of discontinuity
�eld con�guration.

We assume that the discontinuity �eld does not divide
the set of sites into independent sets. This means that there
exits at least one path, made of neighbor sites, between
any pair of sites. In this situation there exists at least one
sequence verifying (17). In any real scenario, the number
of sequences sn verifying (17) is huge, some better than
others. A possible way of choosing good sequences, from
the estimate goodness viewpoint, is by selecting sites with
higher parameter � (i.e., less noisy �ij estimate) in �rst
place. This topic is, however, out of the scope of this paper.

In addition to the above de�nitions, we introduce vector
ln+1 denoting a discontinuity �eld con�guration equal to l
expect for those variables vij and hij signaling discontinu-
ities between site sn+1 and the set of sites not in An: this
variables are set to one, disconnecting site sn+1 from sites
not in An. The dashed line in Fig. (1) schematizes the line
�eld con�guration ln+1 associated the the set An and to
the next site sn+1.

Algorithm



For n := 1; 2; : : : ; N2b�sn = argmax
�sn

p(�sn jx; ln;
b�r; r 2 Vsn) (18)

For i := 1; : : : ;; n := (imodN2)b�sn = argmax
�sn

p(�sn jx; l;
b�r; r 2 Vsn) (19)

The algorithm we propose is shown in the box above.
It embodies two cycles: the �rst, implemented by (18), is
an initialization step; the second, implemented by (19), is
exactly the iterated conditional modes (ICM) proposed in
[14]. ICM is known to be a suboptimal scheme that con-
verges to local maxima. Therefore, the starting point is
critical in obtaining good estimates. The �rst cycle is ex-
actly designed aiming at the determination of a good start-
ing point. It is also a ICM type procedure, but where the
neighbors of a given pixel are constrained to be in the set
of the already updated sites. This is achieved by using
the line �eld con�guration ln, instead of l. The reason for
this procedure is found in the observation mechanism: let
� = (�mod 2�) +2�k be the phase, at a given site, decom-
posed into its principal value (�mod 2�) and a 2� multiple;
since p(xj�) is 2�-periodic, the observation mechanism con-
veys only information about the principal value (�mod 2�).
Integer k must be inferred from neighbors absolute phase,
under the assumption that the phase varies smoothly be-
tween neighbor sites. This implies a recursive scheme, at
least for determining the term 2�k of phase. It is for this
reason that in the �rst step of the algorithm, implemented
by (18), the neighbors of a given pixel are constrained to
be in the set of already updated sites.

3.1 Implementation

Assume that sn = (i; j); from the a posteriori distribution
(14), it follows, after a simple but lengthy manipulation,
that

p(�ij jx; l; �r; r 2 Vij) /

e
�ij cos(�ij � �ij)e

�

�lij�

2
(�ij � ��ij)

2

; (20)

where

�lij := �hij + �hi+1;j + �vij + �hi;j+1 (21)

��ij :=
�i�1;j

�hij + �i+1;j
�hi+1;j + �i;j�1�vij + �i;j+1

�hi;j+1
�lij

:

(22)

Maximizing (20) with respect to �ij is not a trivial task,
due to presence of term cos(�ij � �ij). Aiming at this,
we adopt the strategy followed in [8]. Essentially, it con-
sists in representing the observation factor p(xij j�ij) as a

train of Gaussian terms centered on �
(k)
ij := �ij + 2�k, for

k 2 Z , and with a common variance 
ij . This variance
minimizes the Kulback distance (de�ned in a 2�-interval)
between p(xij j�ij) and the train of Gaussian terms. The
relation between this optimal variance 
n and the observa-
tion dependent parameter �n is provided by a look-up table
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Figure 2: Original phase image.

of solutions of the above mentioned minimization. For de-
tails see [17].

The above approximation of p(xij j�ij) would produce an
in�nite number of Gaussian terms in (20). We adopt the
following simpli�cation: in multiplication (20) take only

the term of the Gaussian sum representation closest to ��ij .

The resulting density p(�ij jx; l; b�r; r 2 Vij) turns out to be
also Gaussian, with maximum

b�ij =
�?ij

ij

+ b��ij�lij�
1

ij

+ �lij�
=

�
?
ij +

b��ij�lij�
ij
1 + �lij�
ij

; (23)

where �?ij := �ij +2�k�, and k
� = argmink j�

(k)
ij �

b��ij j. We

note that both maximizations (18) and (19) are given by

(23): in the �rst case �lij depends only on ln, while in the
second case lij depends only on l.

The interpretation of (23) is clear: estimate b�ij is given
by the weighted mean of �?ij , and

b��ij ; the weights are re-

spectively 1=
ij and �lij�.

4 Experimental Results

Fig. 2 displays a simulated phase to be estimated; it is
composed of three additive terms: a random component, a
Gaussian shaped component, and a ramp modeling a dis-
continuity. The random component is generated by the
autoregressive process

�ij =
1

2
�i�1;j +

1

2
�i;j�1 + uij ; (24)

where index (i; j) are swept in a lexicographic order, and uij
is a sequence of independent zero-mean Gaussian random
variables with standard deviation �u = 0:3; the Gaussian
shaped component is given by

�ij = 3� e�
(i�m)2

2�2
�

(j�m)2

2�2 ; (25)

with m = 50 and � = 30; the third component is a 50 pixels
wide ramp having an increasing rate of 0.1 rad/pixel.
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Figure 3: Interferogram corresponding to a additive noise
model using phase shown in Fig. 2.
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Figure 4: Reconstructed absolute phase.

Since the observation models (1)-(2) and (8) lead to
equivalent observation factors p(xj�), we use the latter for
simplicity.

Fig. 3 shows the interferogram f�ijg, where

�ij = arg(xij); (26)

and xij = e
j�ij + nij with �ij represented in Fig. 2, and

nij being a sequence of indenpendent zero-mean Gaussian
random variables with standard deviation �n = 0:3. The
discontinuity �eld con�guration is superimposed.

Fig. 4 displays the reconstructed phase image using the
proposed methodology. The site sequence sn is the lexi-
cographical one. Although this is a valid sequence for the
discontinuity con�guration considered, that is not the case
for most discontinuity con�gurations. The algorithm was
parametrized with the noise standard deviation �n = 0:3,
and � = 1=(2�2u). Ten iteration of ICM step were applied.

The reconstruction is correct is the sense that discontinu-
ities were preserved and no cycle slips have occurred. Fig.
5, part (b), shows a slice (line 70) of the the original phase
(dashed line) and of the reconstructed phase (doted line).
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Figure 5: Original phase (dashed line), reconstructed phase
(dotted line), and reconstruction error, 10 times magni�ed
(solid line). Parameters used: part (a), �u = �n = 0:1; part
(b), �u = �n = 0:3.

The solid line represents the reconstruction error 10 times
magni�ed. Fig. 5, part (a), likewise, but for �u = �n = 0:1.
The sample mean error is nearly zero and the sample error
standard deviation is 0:07 and 0:3, for �n = �u = 0:1, and
�n = �u = 0:3, respectively.

5 Concluding Remarks

The paper addressed the problem of InSAR absolute phase
reconstruction, in presence of discontinuities. The approach
was Bayesian; the adopted observation model re
ects the
physics of the InSAR problem, whereas the prior, a com-
pound Gauss Markov random �eld, is suited to piecewise
smooth phase images. In this way, the discontinuities ever
present in InSAR applications are taken into account.

The proposed algorithm combines recursive and batch
aspects: while the recursive facet, inspired on stochastic
nonlinear �ltering, provides a cycle sleep free though rough
absolute phase estimate, the batch facet, implemented by
ICM, improves the the bias and variance.

The line �eld con�guration (i.e., discontinuities) were
herein assumed known. Its estimation is an important issue
to be addressed in future work.
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