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ABSTRACT 

Sparse hyperspectral unmixing is a widely used technique in remote 
sensing data characterization. It aims at inferring, from a large spec­
tral library, the pure spectral signatures (endmembers) present in 
each pixel of a hyperspectral image, jointly with their correspond­
ing abundances. The input to sparse unmixing is represented, thus, 
by a hyperspectral image acquired from a platform flying at high 
altitude and a spectral library compiled using laboratory measure­
ments. The reflectance datacube results from a complex ensemble of 
algorithms which translate the digital numbers stored by the sensor 
to meaningful ground reflectance, including the removal of atmo­
spheric influence. A recurrent question in the research community 
does not have an answer yet: how does the atmospheric composition 
at the time of the flight influence the fractional abundances retrieved 
via sparse unmixing? This is a fundamental question, as the atmo­
spheric parameters are subject to uncertainties, being very difficult 
to know them in all pixels. In this paper, we investigate how the 
uncertainty in two atmospheric parameters: water vapor content and 
visibility range, propagates to the final abundance maps via atmo­
spheric correction of the sensed image. Our experiments reveal that 
sparse unmixing is more robust to uncertainty in those parameters 
and performs better in terms of accuracy than unmixing with image­
based endmembers. 

Index Terms- Sparse unmixing, atmospheric correction, un­
certainty, spectral libraries 

1. INTRODUCTION 

Hyperspectral unmixing (see [1] and the references therein) is a con­
cept which defines the processing steps applied to a hyperspectral 
image in order to derive the pure materials present in the image 
(endmembers), their spectral signatures and their respective frac­
tional abundance (the relative areas occupied by the endmembers 
in each pixel of the image). In a classical spectral unmixing setup, 
a few typical operations are performed: data dimensionality reduc­
tion (optional), endmember inference and inversion (estimation of 
abundances). The estimation of endmembers, which can be done 
by extracting pure pixels from the image itself (e.g. , NFINDR [2], 
Pix del Purity Index - PPI [3]) or by generating virtual endmembers 
based on the spatial distribution of the data in a multi-dimensional 
space (e.g. , Vertex Component Analysis - VCA [4], Minimum Vol­
ume Simplex Analysis - MVSA [5]), constitutes a critical step in 
highly mixed scenes, where pure pixels can not be found for all the 
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endmembers or the geometric representations of the data result in 
non-realistic endmembers (e.g. , negative ones). 

Recent research [6] highlights sparse unmixing as a power­
ful alternative to classical methods employing endmember extrac­
tion/generation. Sparse unmixing represents a class of spectral 
unmixing methods which rely on the use of available spectral li­
braries (collections of pure spectra, measured by a spectrometer in 
a controlled environment, e.g. laboratory). The unmixing is for­
mulated as a convex optimization problem aiming at selecting, in 
each pixel, a subset of library members which accurately explains 
the observed spectrum. As the spectral libraries contain a large 
number of spectra compared to the number of endmembers in one 
pixel , the sparsity of the vector of fractional abundances arises as a 
natural condition. Thus, the sparse unmixing can be expressed as a 
convex optimization problem in which the ideal trade-off between 
the accurate reconstruction of the data and the sparsity of the vector 
of abundances is searched for. 

Several factors are proven to strongly influence the accuracy of 
sparse un mixing. Among these factors , the mutual coherence of the 
spectral libraries (cite) and the level of noise contaminating the data 
are two of the most investigated ones [7, 8]. However, a recurrent 
question in this research area does not have an answer yet: what 
is the impact of the different measuring conditions of the data and 
library in the final abundance maps? 

The main difference in the measuring conditions is represented 
by the presence of atmospheric effects in the image which obviously 
do not affect the library spectra. The spectral libraries are compiled 
from measurements made with spectrometers, on the ground, in open 
air or in a laboratory. However, the spectrum of one specific pixel, 
captured by the sensor flying at high altitude, is contaminated with 
contributions from neighboring pixels and, most important, atmo­
spheric effects. 

Schematically, the typical processing of the raw data down­
loaded from the sensor includes: 1) spectral and radiometric cal­
ibration (which results in the so-called at-sensor radiance) and 2) 
atmospheric correction (AC), intended to remove the atmospheric 
artifacts from the observed spectra while transformimg the at-sensor 
radiance to ground radiance or reflectance. The ground reflectance 
(or radiance) obtained after AC is then input to unmixing. 

From the two aforementioned processing steps, we consider in 
this study the atmospheric correction only. The spectral and radio­
metric calibration of the data is a procedure which can benefit from 
accurate definition of the calibration coefficients (e.g. , by perform­
ing laboratory measurements and in-flight simulations on a regular 
basis). However, the atmospheric correction is a complex ensemble 
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of algorithms which require accurate knowledge of the atmospheric 
parameters (in the case considered in this study, visibility range and 
water vapor content) in all pixels. We note that this information is 
not available in practice, as it is infeasible to measure these parame­
ters for each pixel. In practice, two approaches can be taken to tackle 
such lack of information: 1) measurements from ground stations or 
from ground equipments in (or close to) the sensed area are set as in­
put values for atmospheric correction in all pixels, or 2) image-based 
methods are implemented to estimate the parameters on a per-pixel 
basis. On the one hand, the values of the atmospheric parameters 
are very likely to vary across the pixels, due to the fact that the at­
mosphere is a dynamic system (variable in time and space). On the 
other hand, the image-based methods are prone to inherent modeling 
errors. It results that the atmospheric correction rarely benefits from 
exact values of the parameters, which makes impossible the removal 
of all atmospheric artifacts from the data. The uncertainty affecting 
the atmospheric correction parameters is thus propagated to the sub­
sequent applications. Moreover, the spectral libraries employed in 
sparse unmixing are ideally free from these artifacts, which leads to 
an intrinsic mismatching, not present in the classical unmixing using 
extracted endmembers. In this paper, we analyze how the uncertainty 
in the atmospheric parameters are propagated to sparse unmixing re­
sults represented by the fractional abundances. To our knowledge, 
there is no similar study available in the literature. 

The paper is structured as follows. Section 2 shortly reviews 
sparse unmixing and atmospheric correction from a theoretical point 
of view. Section 3 presents the methodology employed to track the 
uncertainty propagation. Section 4 presents experimental results in 
a simulated environment. Section 5 concludes the paper with obser­
vations and hints to future work. 

2. THEORETICAL BACKGROUND 

In this section, we shortly review the theoretical concepts related to 
sparse unmixing and atmospheric correction. 

2.1. Atmospheric Correction 

The term Atmospheric Correction (AC) denotes the ensemble of 
algorithms applied to a (spectrally and radiometrically) calibrated 
image, delivered by a sensor, intended to derive a ground radi­
ance/reflectance datacube which is free of atmospheric effects. The 
at-sensor sensed spectrum of a pixel contains data from the actual 
target contaminated with spectral artifacts introduced by neighbor­
ing pixels (the so-called adjacency effect) and with atmospheric 
effects due to light scattering depending on the composition of the 
atmosphere at the time of the flight. In this work, we neglect the ad­
jacency effect, as the influence of spatial neighborhoods is given by 
a variety of factors (target albedo, topography, flight direction, solar 
position) which are difficult to simulate. Among the AC parameters, 
the water vapor concentration [9 . cm- 2 ] and the aerosol optical 
thickness (related to atmospheric visibility [km]) are the ones with 
highest impact on the spectral quality of the data. 

The content of WV in the atmosphere introduces features at 
well-established wavelengths (resulting in the so-called water ab­
sorption features), while the visibility affects the amplitude of the 
spectrum in different spectral regions. The AC requires accurate 
knowledge of these parameters in each pixel of the image, which 
is unfeasible in practice. Over- and under- estimation of WV re­
sults in peaks and dips at the water vapor absorption bands, respec­
tively [9]. The influence of VIS on the retrieved spectrum is non­
linear and varies with the target albedo: for low albedo (approxi-
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mately 0.3 for MODerate resolution atmospheric TRANsmission 4-
MODTRAN-4 [10] software), the increase or decrease in VIS results 
in increased or decreased amplitude of the spectrum, respectively. 
For high albedo, the effect is reverted. After AC, potential miscali­
brations of the at-sensor radiance data lead to noisy reflectance val­
ues at the affected bands. Usually, smoothing is applied to the re­
flectance spectra as a final processing step before sending the data 
to an user. It results that the noise affecting remotely sensed hyper­
spectral data, no matter the reasons which generate it (dark current, 
miscalibration, among others) is most of the times band-correlated. 

2.2. Sparse Unmixing 

We consider that the data follows the linear mixing model , in which 
each spectrum in the data can be expressed as a linear combination 
of the spectra of the endmembers. Under this assumption and given 
a spectral library A , the observed spectrum y for one pixel can be 
expressed as 

y = Ax+n, (1) 

where x is the vector of fractional abundances and n is a vector col­
lecting the errors that affect the measurement process (e.g., noise). 
The fractional abundances are subject to the so-called non-negativity 
constraint (ANC) and the sum-to-one constraint (ASC) (the abun­
dances cannot be negative and they should sum to one) [1]. 

In a sparse unmixing approach, the solution of the unmixing is 
the sparsest combination of library members which explains with 
high accuracy the explained data. A typical formulation of a sparse 
regression optimization to perform hyperspectral unmixing is ex­
pressed as 

min (2) 

subject to: x 2: 0, 

where the first term is the data-fitting term and the second term is the 
Cl-norm ofx which imposes the sparsity, while>. is a regularization 
parameter which weights the two terms of the objective function. 

3. EXPERIMENTAL SETUP AND METHODOLOGY 

A simulated image of 100 x 100 pixels containing 9 endmembers 
randomly selected from a library A E lR224X240 (a subset of 240 
spectra from the USGS library available online l ) is used in our ex­
periments. The library spectra are assigned to 55 groups, each group 
representing one distinct material. In order to simulate spectral end­
member variability in the scene, two of the nine endmembers are 
chosen from the same group (chlorite). The scene is generated fol­
lowing the methodology presented in [7] (see the procedure to gen­
erate second simulated image, DC2, in this paper). The fractional 
abundances display spatial smoothness and are generated according 
to the LMM in which the ANC and ASC are enforced. This image 
serves as a ground-truth reflectance image, for which the abundances 
of all endmembers are known in each pixel. 

The ground-truth reflectance image is then upscaled to at-sensor 
radiance using the MODTRAN software. We assume the data is ac­
quired by the HyMap2 sensor in 126 spectral bands. The ground­
truth reflectance spectra are thus resampled to the HyMap wave­
lengths. To simulate the actual flight, the viewing and illumina­
tion geometry (sensor configuration) are set using real data from a 

1 See hup://speclab.cr.usgs.gov/spectral-lib.html 
2See http://www.dlr.de/eoc/enldesktopdefault.aspxltabid-
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previous flight, available at VITO. The two atmospheric parameters 
considered in our study are set to wv = 1.5g· cm - 2 for WV and 
vi s = 30 km for VIS, in order to establish the true atmospheric 
conditions at the time of the flight. These parameters are equal for 
all pixels. The simulated at-sensor radiance image represents the 
(radiometrically and spectrally) calibrated image used as input to at­
mospheric correction. 

The at-sensor radiance is transformed to ground reflectance us­
ing the Central Data Processing Center (CDPC) [11], which is the 
standard processing chain at the Flemish Institute for Technologi­
cal Research (VITO- TAP), Mol, Belgium. The COPC has tradi­
tion of several years in the processing of remotely sensed data and 
uses MODTRAN in the AC process. To simulate uncertainty in the 
AC parameters, we consider that the WV varies between 1.2 and 
l.8 g . em - 2 with an increasing step of 0.02 g . em - 2 , while VIS 
varies between 20 and 40 km with an increasing step of 2 km. 
The combinations of all the considered values result in 340 process­
ing cases. The 340 reflectance images are subsequently contami­
nated with spectrally correlated noise obtained from low-pass filter­
ing i.i.d. Gaussian noise, using a normalized cut-off frequency of 
57r I L , where L is the number of bands, and having the signal-to­
noise ratio (SNR == IE II Ax l1 2 lIE Il nll ;) fixed to 30dB. 

Unmixing is performed for all generated reflectance images us­
ing both extracted endmembers inferred via VCA and the spectral 
library A. When VCA is employed, we assume that the number of 
endmembers is known and equal to the true one (nine). The sparse 
unmixing algorithm employed to solve the optimization problem (2) 
is the Sparse Unmixing via variable Splitting and Augmented La­
grangian (SUnSAL) [12] algorithm. In each processing case, the 
parameter A takes the following values: 0,0.01,0.03, 0.05,0.1 , 0.2 
and 0.3. For each image, the unmixing is repeated three times (the 
contamination with noise being simulated separately each time) and 
only the average of best performances (among all considered values 
of A) are reported. We expect that the sparsity constraint has limited 
or no impact on the data employing extracted endmembers. 

The performance discriminator is the signal to reconstruc­
tion error [6]: SRE == IE[llxI1 3l/IE[llx - 52 11 3], measured in dB: 
SRE(dB) == 10 10glO(SRE), where x is the true quantity and x is 
the estimated one. We use this indicator for both reflectance and 
unmixing. Higher SRE(dB) indicates better performance (in un­
mixing) or better spectral quality (in reflectance). The unmixing 
performance is reported both at individual member (each library 
member is considered to represent one material) and at group level 
(the abundances of the members belonging to one group are added 
together to define the abundance of the material assigned to the 
group). 

4. EXPERIMENTAL RESULTS 

First, we analyze the influence of AC parameters on the spectral 
quality. Fig. 1 shows the evolution of the SRE(dB), computed for 
reflectance, W.r.t. the AC parameters, for both noiseless and noisy 
data .. 

Fig. l.a) , which refers to noiseless reflectance, proves the im­
portance of correctly setting the parameters during the AC. A peak 
performance is visible when the two considered parameters are set to 
the true values. It can be observed that the spectral quality degrades 
when inaccurate values are employed. The WV impact is stronger 
than the VIS influence. The same Figure suggests that an overes­
timation of VIS is preferrable to underestimation in the considered 
setup. From Fig. l.b), which corresponds to the data affected by 
noise, it is obvious that the advantage of correctly setting the AC 
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Fig.!. Spectral quality measured by SRE(dB) for (a) noiseless data 
and (b) noisy data. 

parameters is strongly attenuated from the point of view of spectral 
quality. No performance peak is visible in this figure. However, the 
WV is still a determinant factor in the data quality and it is confirmed 
that the VIS values have a weaker (although still visible) impact on 
the data quality. 

The noiseless data is, however, an ideal case which is not en­
countered in practice. For this reason, we center our analysis related 
to unmixing on the noisy data. In Fig. 2, we plot the SRE(dB) com­
puted for the unmixing when both the image-based endmembers and 
the library are used. Fig. 2.a) shows the performance computed for 
individual endmembers, while Fig. 2.b) displays the performance 
computed for groups (materials). 

Fig. 2 displays different trends of the unmixing performance 
when the two approaches are used. On the one hand, the unmixing 
with image-based endmembers shows highly unstable, irregular per­
formance and there is no visible advantage of knowing the correct 
AC parameters. On the other hand, sparse unmixing employing the 
spectral library has a smooth performance variation and takes ad­
vantage of the corect setting of the AC parameters (see the higher 
performance around the correct WV value). Although none of the 
two methods reaches excellent perfromance when the performance 
is computed for individual endmembers, it is worth noting that spec­
tral unmixing employing the spectral library is slightly more perfor­
mant than the unmixing with image-based end members when the AC 
parameters are set t o values close to the true ones, while a smooth 
performance degradation is visible in the other cases. Another ob­
servation is that the unmixing with spectral library is robust to the 
VIS variation in the considered setup (note that the unmixing per-
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formance is approximately constant when VIS varies , although the 
spectral quality decreases for underestimated VIS - see Fig. l.b). 
The performances plotted in Fig. 2 highlight more clearly the ad­
vantages of sparse unmixing over the unmixing employing image­
based endmembers. It is worth noting that the unmixing perfor­
mances computed for groups of materials are superior to the per­
formances with individual endmembers in all processing cases, re­
gardless of the taken approach. In addition, the sparse unmixing is 
most of the times superior, which indicates that, as a consequence of 
noise, the identification of the exact library member contributing to 
the data is difficult (as seen from Fig. 2.a), but the correct material 
is better identified as compared to the image-based method. This is 
a remarkable finding, as the generated data favors the unmixing with 
image-based endmembers due to the presence of pure pixels for all 
endmembers. It is expected that the unmixing using image-based 
endmembers loses accuracy when the pure pixel assumption is not 
met. Moreover, the performance trend in Fig. 2.b) suggest that the 
unmixing with image-based endmembers might perform better than 
the unmixing with spectral library if the errors in the estimated WV 
are larger than 0.2 9 . cm- 2 , approximately. However, from our 
practical experience in using the CDPC, such an error in WV values 
is usually not tolerated, as it results in visible peaks or dips at the 
water absorption bands. The presented results are also in line with 
the findings in our previous work [9] , where it is shown that unmix­
ing with library signatures is superior to unmixing with image-based 
endmembers when the true set of endmembers is known. 
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5. CONCLUSIONS AND FUTURE WORK 

In this work, the propagation of uncertainty from atmospheric 
correction parameters to sparse hyperspectral unmixing was in­
vestigated. Our experiments with simulated data were designed 
to tackle one of the hot topics in our research community : how 
important is the difference in acquisition conditions between a li­
brary and a reflectance image when it comes to unmixing? It was 
shown that sparse unmixing is a robust application in the sense that 
it achieves higher performance than unmixing employing image­
based endmembers, when the data is atmospherically corrected 
using parameters which do not deviate significanlty from the true 
values. The performances of sparse unmixing vary smoothly with 
the atmospheric parameters variation, which is not the case when the 
image-based approach is followed. This study opens a plethora of 
possibilities for future research. Other processing parameters can be 
included in the experiments, such as the adjacency window related 
to the background contribution to one pixel. Other sparse unmix­
ing algorithms can be tested, including dictionary pruning. Other 
applications (e.g., image classification, target detection, image seg­
mentation) can be also explored following a similar approach. The 
reproduction of this study in a real scenario also represents a chal­
lenge, due to the lack of images benefiting from knowledge of the 
true values of the atmospheric parameters in all pixels. 
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