
AN OVERLAPPED GROUP ITERATIVE METHOD FOR

SOLVING LINEAR SYSTEMS

José M. Bioucas-Dias

Instituto Superior Técnico

Instituto de Telecomunicações

Torre Norte, Piso 10

Av. Rovisco Pais, 1049-001 Lisboa

Email: bioucas@lx.it.pt

2001

Abstract

We propose a new iterative method for the numerical computation of the solution of linear systems

of equations. The method is suited to problems exhibiting local dependencies, such as those result-

ing from the discretization of partial differential equations or from Markov random fields in image

processing. The technique can be envisaged as a generalization of the Gauss-Seidel point iterative

method being able, however, to achieve greater convergence rates. On each iteration, a group of

variables is treated as unknown while the others are assumed known; the equations associated to

the mentioned group are then solved in order to the unknown variables. The following iterations do

the same, choosing other groups of variables. The successive groups overlap one another, departing

definitely from the group iterative perspective, since in the latter case groups are disjoint. The over-

lapped group (OG) method, herein introduced, is shown to converge for two classes of problems: (1)

symmetric positive definite systems; (2) systems in which any principal submatrix is nonsingular and

whose inverse matrix elements are null above (below) some upper (lower) diagonal. In class (2) the

exact solution is reached in just one step. A set of experiments comparing OG convergence rate and

computational complexity with those of other popular iterative methods, illustrates the effectiveness

of the proposed scheme.

1



1 Introduction

The need for solving N × N symmetric positive definite (SPD) linear systems

Ax = b, x ∈ RN , and A = AT , (1)

arises in several applications, namely in the solution of integral and partial differential equations,

image processing, time series analysis, statistics, control theory, etc. The algorithms for finding the

solution x∗ = A−1b can be classified as direct or iterative [1], [2], [3], [4].

1.1 Direct Methods

Direct methods, by definition, reach the exact solution within a finite number of operations. For

matrices without any special structure, the complexity of direct methods is O(N3), meaning that the

number of floating point operations1 is of the order of N3. When the system is large, a complexity

of is O(N3) unbearable. There are, however, classes of systems to which there exits faster direct

algorithms. A relevant example is the Toeplitz systems which can be solved with the Levinson

recursion formula [5], [6], [4] with O(N2) complexity, or with the algorithms proposed in [7], [8] with

complexity O(N ln2 N). If, besides Toeplitz, A is generated by a rational function of order (p, q),

methods proposed in [9], [10], and [11] have max(p, q) O(N) complexity.

The conjugate gradient (CG) method, introduced in [12], is another direct2 method for solving

SPD linear systems. The convergence rate of the CG method is determined by the spectrum pattern

of matrix A [13]. Roughly, it converges faster if the eigenvalues of A are clustered. The class

of preconditioned conjugate gradient (PCG) methods introduces a preconditioning step through a

matrix P on the CG method. From the spectral clustering point of view it is the matrix P−1A that

matters. The preconditioner P should be, somehow, close to matrix A. Preconditioners for Toeplitz

systems are studied in [14], [15], and [16]. A common feature to all these preconditioners is that

they can be easily inverted (by means of fast transforms such as the fast Fourier transform, cosine

transform, or sine transform), leading to superfast algorithms with complexity O(N ln N). Another

advantage of the PCG methods is that they can be parallelized, whenever the transform used can

be parallelized. Parallelization leads to a complexity O(log N), when N processors are used. For

non-Toeplitz matrices, there is no general approach concerning the conditioner design.

1Real additions and real multiplications.
2The CG method is a direct method because it finds the solution after no more than N iterations. However, it

can also be classified as an iterative method, since it generally needs less than n iterations to achieve a solution with

acceptable precision. This is more evident in large systems.

2



1.2 Iterative Methods

Linear systems resulting from many signal and specially image problems are very large. A usual

feature of such huge systems is that the involved matrices are sparse; the interactions between

variables are usually confined to a small neighborhood. This can be found, for example, in linear

systems resulting from discretization of partial differential equations, where the interaction length

depends on the order of the highest derivative [1]. Also, in the field of image restoration, using

regularization principles or stochastic paradigms such as Markov random fields, the neighborhood

order is, frequently, much smaller than the line and column sizes [17], [18], [19]. Assuming Toeplitz

systems, the PCG method can still be applied. However, even for matrices with sparse structure, the

PCG method still leads to the same O(N ln N) complexity, since the inverse of a sparse matrix is not,

necessarily, sparse. Thus, the preconditioning step of PCG methods has still O(N ln N) complexity.

For large systems, iterative methods are preferred to direct methods [2]; despite the infinite time

they generally need to find the exact solution, they often yield a solution within acceptable error

with fewer operations than direct methods. Moreover, round off errors3 (or any other error), are

dumped out as the process evolves [2], [1], [20], [21].

For a wide class of sparse matrices (e.g. systems resulting from discretization of partial differential

equations or systems resulting from Gauss-Markov descriptions in signal and image processing), the

iteration complexity is O(N). Consequently, if an acceptable solution is reached in t0 iterations, with

t0 independent of N , then the overall complexity is still O(N). Another important and sometimes

determinant attribute of iterative methods is the mild storage requisites normally needed in the case

of sparse matrices.

Among iterative techniques, the Jacobi (J), the Gauss-Seidel (GS), and the successive overrelax-

ation (SOR) are well known and widely used methods. They belong to the class of linear stationary

iterative methods of first degree [1], [3]. They are also classified as point iterative, since each iteration

can be implemented by solving simple equations for each system component.

Group iterative methods [1] resemble point iterative ones, replacing each individual component by

a group, such that each component belongs to one and only one group [1]. If the groups form a

partitioning of the set S = {1, · · · , N}, the resulting method is known as a block method [20], [22].

Each of the above referred point methods has a correspondent block method; namely, the block

Jacobi (BJ), the block Gauss-Seidel (BGS), and the block successive overrelaxation (BSOR).

Block iterative methods were developed with the purpose of increasing the convergence rate of the

3For large and/or ill-conditioned systems, rounding errors due to floating-point arithmetic are, frequently, the main

problem of direct methods. Rounding errors can severely degrade the solutions found.

3



respective point methods. Assuming that A is a M -matrix, the BJ and BGS converge at least as

rapidly as the respective point counterparts [1]. On the other hand, if A is Stieltjes and π-consistently

ordered, then the BSOR method, implemented with the optimum relaxation factor, converges faster

than the SOR [1], [3]. It should be stressed that determining the exact (or approximate) relaxation

factor, necessary to the SOR and the BSOR methods, frequently has such a high cost that the

method is impracticable. A remarkable exception occurs whenever A has the socalled property A

[1], [3]. In this case it is possible to establish a relation between the eigenvalues of A (equivalently

the eginvalues of Jacobi iteration matrix) and the optimum relaxation factor. This procedure is very

effective, for example, in problems resulting from the discretization of elliptic differential equations

[1], [23].

1.3 Rationale of the Proposed Iterative Method

A shortcoming of the block methods, at least for those systems describing local interactions, is that

the error of each component tends to be larger on the block boundaries than on its interior4 This

pattern of behavior is illustrated in Fig. 4: the curve BSG-8 shows the error after the first iteration

of the BSG method with blocks of size 8. Notice the larger errors at the block boundaries. We will

back in more detail to this experiment in Section 5

The overlapped group (OG) iterative method, herein introduced, operates (as group methods do)

on groups of components. However, contrary to block methods, in the OG scheme groups are not

disjoint. By overlapping the groups in a proper manner, the distance between the components being

updated and the ones already updated is kept constant (or above a minimum positive number D).

Thus, by choosing the updated components with smaller error, it is expectable that the proposed

method converges faster than the block methods.

The OG method is a descent procedure that can be interpreted in terms of the evolution of the

quadratic function

F (x) =
1

2
xT Ax − bT x. (2)

If A is symmetric and positive definite, then F (x) is strictly convex; therefore, it has a unique

minimum x∗, satisfying ∇F (x∗) = Ax∗ − b = 0. Minimizing F (x) or solving the system Ax = b

are equivalent problems. In the i-th OG iteration, function F (x) is minimized with respect to the

components xj for j ∈ Si, where Si is a set of indices, keeping the components xk for k /∈ Si constant.

Iteration (i + 1) resembles the i-th one, replacing the set Si by Si+1 which partially overlaps the

former. The overlapping of sets Si is crucial concerning the achievement of larger convergence rates.

4Block boundaries depend on the problem and on the way that indexes are assigned to each site.

4



This behavior is illustrated by curves BSG-8 and OG-8 in Fig. 4: both methods use blocks of size 8;

however the blocks in OG-8 have an overlaping of 7, whereas in BSG-8 they do not overlap. Notice

the smaller error of OG-8 after the first iteration.

On the other hand, a suitable implementation of the proposed strategy demands, approximately,

the same computational burden as the Gauss-Seidel (which corresponds to the choice Si = {i})
applied on the original system.

According to the rationale just presented, it is expectable that the sequence {x(n)} produced by

the OG method converges to x∗ = A−1b, whenever A is a SPD matrix; this result is shown in Section

4. Besides SPD systems, convergence is also studied for systems whose inverse matrix elements are

null above (below) some upper (lower) diagonal. For these matrices, there are choices of the sets Si

such that the OG method takes only one iteration to converge.

The paper is organized as follows. Section 2 introduces the OG method formally. A comparison with

the multisplitting methods and a reinterpretation under the light of the multigrid concept is also

provided. Section 3 proposes a filter-like implementation, makes considerations about complexity,

and shows that there exists an equivalent system from the Gauss-Seidel iteration point of view.

Section 4 presents convergence results. Section 5 shows results of a series of experiments and makes

comparisons with other iterative methods. Section 6 ends the paper by presenting some concluding

remarks. The proofs of the theorems on convergence are given in the Appendix.

2 Overlapped Group Method

The first step to implement the OG method is the definition of the iteration groups5:

Definition 1 An ordered covering g of S = {1, . . . , N} is an ordered collection of subsets Si ⊂ S,

with i = 1, . . . , ng such that ∪i=ng

i=1 Si = S. Two ordered coverings g and g′ given by S1, . . . , Sng and

S ′
1, . . . , S

′
n′

g
, respectively, are identical if ng = n′

g and if S1 = S ′
1,. . .,Sng = S ′

n′
g
.

Definition 1 differs from an ordered grouping [1], in that sets Si in the latter are necessarily disjoint.

A one-dimensional (1D) oriented covering is g1(D) ≡ {S1, . . . , SN−D+1}, where

Si = {i, i + 1, . . . , i + D − 1}, i = 1, . . . , N − D + 1. (3)

The Covering (3) is suited to system matrices with its significant elements close to the main diagonal.

This is quite often the picture in 1D processing problems.

5The designation of group is not to be understood in the usual mathematical sense.

5



• • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • 

 
1   2 … j N2 

… 

1 
2 

…
 

i 

…
 

N1 

Sij  

Future of (i,j) 

Past of (i,j) 

Figure 1: Illustration of a set Sij which is an element of the 2D oriented covering g2(2, 2). The

regions named past and future denote those sites (k, l) ∈ L such that (k, l) < (i, j), and (k, l) ≥ (i, j),

respectively.

Two-dimensional (2D) problems are frequently defined on regular lattices of the form L = {(i, j)| 1 ≤
i ≤ N1, 1 ≤ j ≤ N2}. Using the order relation on L induced by the lexicographic ordering (by row),

a 2D oriented covering is g2(D1, D2) ≡ {Si,j, i = 1, . . . , N1 − D1 + 1 j = 1, . . . , N2 − D2 + 1}, where

Sij = {(k, l) | (k, l) ≥ (i, j), 0 ≤ |k − i| ≤ D1 − 1, 0 ≤ |l − j| ≤ D2 − 1}. (4)

Fig. 1 schematizes a set Sij of the covering g2(2, 2). The shadowed region named past represents

those sites (k, l) ∈ L such that (k, l) < (i, j), while the unshadowed region named future represents

those sites (k, l) ∈ L such that (k, l) ≥ (i, j).

We introduce now a set of matrices and vectors depending on A, g, x, and b.

Definition 2 Given an ordered covering g, define the diagonal matrix Di = diag (1Si
(k), k = 1, . . . , N),

where 1Si
is the indicator function of set Si and diag(a) is a diagonal matrix with diagonal entries

given by the respective components of vector a. Define also Di = I − Di. Given A, let Qi = DiADi

and Qi = DiADi. Further, define matrices Gi = Qi + Di and Hi = −Qi + Di.

As an example of the matrices defined above, consider the covering (3) with D = 2, and N = 10.

The set S3 = {3, 4} induces

Q3 =


02,2 02,8

02,2 [2 × 2] 02,6

02,8 02,2

 G3 =


I2 02,8

02,2 [2 × 2] 02,6

02,8 I6


6



and

Q3 =


02,2 02,8

[2 × 2] 02,2 [2 × 6]

02,8 02,2

 H3 =


I2 02,8

−[2 × 2] 02,2 −[2 × 6]

02,6 I6

 .

The notation [i × j] stands for the correspondent block of A spanning i lines and j columns.

The OG method is now formally introduced:

OG Method Given the linear system Ax = b, the ordered covering g, the cyclic schedule i =

saw(n, ng) ≡ (n − 1) mod ng + 1 with n = 1, 2, . . ., and the starting vector x(0), the OG method

generates the sequence {x(n)} according to

x(n) = (G−1
i Hi)x(n − 1) + G−1

i Dib, n = 1, 2, . . . (5)

Implicit in (5) is the assumption that G−1
i exists, for i = 1, . . . , ng.

A sufficient condition for the existence of G−1
i , for i = 1, . . . , ng, is that A is positive definite.

However, the OG method applies to a wider class of matrices as we will see in Section 4.

Assume that matrix A is SPD. In order to evaluate the quadratic function F (x) = 1
2
xT Ax − bT x

along the successive iterations, define the column vector si such that its j-th component is the

derivative of F (x) with respect to xj if j ∈ Si and zero otherwise. Having in mind the structure of

matrices Qi, Qi, and Di, one can write

si = Qix + Qix − Dib. (6)

Let x(n − 1) and x(n) be vectors with components xj(n − 1) = xj(n) if j /∈ Si. This constraint is

expressed by

Dix(n) = Dix(n − 1). (7)

Furthermore, assume that the components xj(n) for j ∈ Si lead to to si = 0. This is equivalent to

Qix(n) = −Qix(n) + Dib = Qix(n − 1) + Dib. (8)

The last equality is an immediate consequence of Qi having null columns c, for c ∈ Si. Summing

equation (7) and (8), one obtains

(Qi + Di)x(n) = (−Qi + Di)x(n − 1) + Dib, (9)

which, reminding that Gi = Qi + Di and Hi = −Qi + Di, and assuming that G−1
i exists, has the

solution (5). Thus, the OG method is a descent method that, in each iteration, minimizes F (x) with

respect to {xj|j ∈ Si}.

7



Successively applying the iteration (5) with i = saw(n, ng) = 1, . . . , ng, and n = (t − 1) ng +

1, . . . , t ng one obtains

x(t ng) = Mx((t − 1) ng) + Nb, t = 1, 2, . . . (10)

where

M =
i=1∏
i=ng

G−1
i Hi, (11)

N =

ng−1∑
i=1

k=i+1∏
k=ng

(G−1
k Hk)

G−1
i Di

+ G−1
ng

Dng . (12)

We now introduce the subsequence x(n = t ng), with t ∈ N (the set of naturals), which is the

output of OG iteration after t full sweeps of index i in (5). The index t in x(t) and the index n in

x(n) will distinguish both sequences6 . Using this notation, equation (10) becomes

x(t) = Mx(t − 1) + Nb t = 1, 2, . . . (13)

which is a linear stationary iterative method of first degree [1]. Solving the recursion (13), one is led

to

x(t) = M tx(0) +
i=t−1∑
i=0

M iNb. (14)

If N−1 exists, then, the sequence {x(t)} is generated by the splitting A = B − C, with B = N−1,

and C = N−1M .

Assume that matrix M is convergent (i.e., its spectral radius satisfies ρ(M) < 1). This implies

that (see [1])

x∞ = lim
t→∞

x(t) =

(
∞∑
i=0

M i

)
Nb = (I − M)−1Nb. (15)

Defining e(t) = x(t) − x∞, and after some manipulation involving (13) and (15), one is led to

e(t) = M te(0). (16)

Thus, if M is convergent, the distance between x(t) and x∞ decays geometrically. Conversely, if M is

not convergent, there exist starting points x(0), for which the recursion (13) diverges [1]. Of course,

the only interesting case is x∞ = x∗ = A−1b. In Section 4, two classes of systems exhibiting the

latter property are studied.

6This notation is of course incorrect since we are naming different functions with basis on their arguments. We

have adopted it however for the sake of lightness of the exposition.

8



2.1 Connection with Multisplitting

At this point a reference to multisplitting methods [24], [25], [26], [27] is worthy. They are parallel

algorithms for solving linear systems of equations. A multisplitting is a sequence of splittings A =

Bk − Ck, for k = 1, . . . , nK (matrix Bk is invertible by definition). The iterative scheme

xk(t) = B−1
k Ckx(t − 1) + B−1

k b t = 1, 2, . . . (17)

is associated to each k. Vectors xk(t) can be computed concurrently and linearly combined to produce

x(t) =

nK∑
k=1

Ukx
k(t), (18)

where Uk ≥ 0 is a diagonal matrix, and
∑k=nK

k=1 Uk = I. Normally, each splitting is built to privilege

a group of variables xi, i ∈ Sk, concerning their error in each iteration. In order to select only the

components xj, j ∈ Sk, matrix Uk is set to zero except for the j-th principal diagonal element which

is set to one if j ∈ Sk. Consequently, only a small part of B−1
k and B−1

k Ck, need to be computed.

A comparison between multisplitting and the OG method leads to the following conclusions:

1. Multispllitting methods update groups of variables concurrently, whereas OG updates groups

sequentially

2. For SPD systems, OG is a descent method: each update of a variable group minimizes the

quadratic function associated to the system, keeping constant the remaining variables. In

contrast, even if the meaning of each multisplitting update was clear from a descent point of

view, the result of a linear update combination is not clear.

This considerations bring to mind the idea of a parallel implementation of the OG method itself;

given an ordered covering and an associated set of matrices Uk having the same meaning as in (18),

the following parallel/iterative scheme can be implemented:

xk(t) = G−1
k Hkx(t − 1) + G−1

k b (19)

x(t) =

nK∑
i=1

Ukx
k(t), (20)

where Gk and Hk are the matrices associated to the group Sk, from Definition 2. We stress that

A ̸= Gk − Hk, and thus this scheme is not a multisplitting.

The work [28] proposes, implicitly, an iterative algorithm of the type (19)-(20), which was conceived

to efficiently explore parallel architectures. The adequation of the algorithm to the parallel hardware

determines the choice of sets Sk. Concerning sets Uk, its i-th diagonal element is given by uk
i =

9



[
∑ng

k=1 ISk
(i)]−1. Thus, in the t-th iteration, the new variable value xj(t) is given by the mean of

xk
j (t) for j ∈ Sk, and k = 1, . . . , ng. It should be stressed that the scheme proposed in [28] results

more from hardware adequation than from an intentional implementation of scheme (19)-(20).

Given an arbitrary starting vector x(0), the sequence {x(t)} generated by (19)-(20) is convergent

if and only if matrix

M =

ng∑
k=1

UkG
−1
k Hk (21)

is convergent. It would be worthy to compare ρ(M) with ρ(MJ), where MJ = D−1
A (LA + UA) is

the Jacobi iteration matrix, DA is the diagonal of A, and LA and UA are the negative strictly lower

and the negative strictly upper triangular parts of A, respectively. It would also be interesting to

compare convergence rates of matrix M with convergence rates of multisplitting schemes. However,

this is out of the scope of this work.

2.2 Connection with Multigrid

Let x∗ be the solution of Ax = b (by hypothesis A−1 exists). Frequently, x∗
i depends on far data

variables bk: |k − i| ≫ 0. This fact penalizes the convergence rate of iterative methods, and fostered

the multigrid approach [29]. The underlying idea is that one should firstly determine the long

distance (low frequency) components of the solution, by means of some subsampling scheme, and

next determine the short distance (high frequency) components of the solution, by means of some

interpolation scheme. The OG method, under covering g1(D), produces a local inversion of size D.

In this way, the component xi(t + 1) receives information from data components bk up to distance

k = i + D − 1. Moreover, if x∗
i depends only on bk: k < i + B (which is equivalent to having A−1

elements null above the upper B-th diagonal) and D ≥ B+1, then the OG method finds the solution

in one step (a proof of this result is given in section 4). Thus, the OG method embodies, in this

sense, the multigrid philosophy. A similar set of ideas applies equally to 2D-problems.

3 Implementation

Assuming segmentation g1(D) defined in (??) and D = 1, the OG method reduces to the GS

method. Otherwise (D > 1), if equation (5) was directly implemented, it would involve a complexity

per iteration greater than the GS scheme and even greater than block methods (considering blocks of

size D). However, it is possible to compute x(t) with fewer operations. This is going to be illustrated

for segmentation g1(D).

10



= A4 

a41 

a51 

a61 

a42 

a52 

a62 

a43 

a53 

a63 

a47 

a57 

a67 

a48 

a58 

a68 

a49 

a59 

a69 

 

X4 

 

a41 

a51 

a61 

a42 

a52 

a62 

a43 

a53 

a63 

a47 

a57 

a67 

a48 

a58 

a68 

a49 

a59 

a69 

A4 = 

x1 

x2 

x3 

x7 

x8 

x9 

 

B4 

 

b1 

b2 

b3 

b7 

b8 

b9 

x1 

x2 

x3 

x7 

x8 

x9 

b1 

b2 

b3 

b7 

b8 

b9 

X4 = B4 = 

A41 A42 A43 A47 A48 A49 

Figure 2: Schematization of submatrices introduced in Definition 3, for N = 9, D = 3, and S4 =

{4, 5, 6}.

Let A[Si|Sj], for Si, Sj ∈ g, denote the submatrix of A obtained by removing from A all lines and

columns whose indexes are not in Si and Sj, respectively. In the same fashion define b[Si] as the

subvector of column vector b obtained by removing from b all components whose indexes are not in

Si.

At this point it is convenient to introduce the following submatrixes:

Definition 3 Given the sets Si ∈ g and Si = Sc
i (complement of Si with respect to {1, 2, . . . , N}),

the matrix A, and the vectors b and x we introduce: Ai = A[Si|Si], Ai = A[Si|Si], Aij = A[Si|{j}],
for j = 1, . . . , N , Xi = x[Si], X i = x[Si], Bi = b[Si], and Bi = x[bi].

Figure 2 depicts an instance of the entities above defined for segmentation g1(3), N = 9, and

S4 = {4, 5, 6}. Notice that matrices Ai and Ai are obtained from Qi and Qi by deleting their null

row and columns.

Consider the n-th iteration (5) such that i = saw(n, ng) and i + D ≤ N : although vector Xi

has dimension D, only its first component xi needs to be computed. This is so because: (1) the

components xj, j = i + 1, . . . , i + D − 1 will be updated in the next iteration; (2) the new values

of the variables in the group Si+1 depend on xj(t) for j = i + D + 1, . . . , N , and on xj(t + 1), for

j = 1, . . . , i. Thus, in the n-th iteration, only xi(t + 1) needs to be computed, being wasteful to

process the complete block. Only if i = N −D + 1, it becomes necessary to compute all components

of XN−D+1.

11



z -1 z -1 z -1 

 × 

· 

 ×  ×  ×  × 

∑ 

 ×  × 

· · 

· 

 

 

− 
φ4(t) 

s 

as+1,s as+2,s 
as+3,i 

p4 
s p3 

s p2 
s p1 

s 

xi(t) xi(t-1) 

φ4(t) 
s φ3(t) 

s φ2(t) 
s φ1(t) 

s 

 −  − 

− 

 + 
xi(t) 

xi(t-1) 

φ3(t) 
1 φ2(t) 

1 φ1(t) 
1 

Figure 3: Filter like structure implementing a OG iteration for D = 4.

For 2D problems defined on regular lattices, segmentations g2(N1, D2) (group of lines) have the

property described above, but now applied to lines (recall that the lattice has size N1 × N2). The

same applies to columns using segmentation g2(D1, N2). If D1 ̸= N1 and D2 ̸= N2, components xij,

xi+1,j−D2+1, . . . , xi+D1−1,j−D2+1 (with the suitable adjustments on the boundary) need to be computed

in each iteration. Hence, D1 variables have to be updated.

Define the functions r(i) and s(i) on the set i = 1, . . . , N as

r(i) =

 1 i ≤ N − D

i − (N − D) i > N − D
and s(i) = i − r(i) + 1, (22)

and the column vector

pi = [A−1
i ]r(i), (23)

where the notation [A]k stands for the k-th row of matrix A. The iterative scheme (5) under the

segmentation g1(D) is, then, equivalent to

xi(n) = pi(Bs(i) − As(i)Xs(i)(n − 1)) i = 1, . . . , N. (24)

Apart from pi, vector As(i)Xs(i)(n − 1) in (24) is by far the most computational demanding. For

fully populated matrices, it needs (N − D) × D real multiplications. However, for D > 1 a major

12



component of (24) can be determined recursively. Noting that piAs(i) = [δ(k − r(i)), k = 1, . . . , D],

where δ is the kronecker symbol, one can write (recall that x(t) = x(n = t ng))

xi(t) = xi(t − 1) + piϕs(i)(t) with i = 1, . . . , N, (25)

with

ϕs(t) = Bs −
k=s−1∑
k=1

Ask xk(t) −
k=N∑
k=s

Ask xk(t − 1) s ≤ N − D + 1. (26)

The components of ϕs(t) = [ϕs
1(t), . . . , ϕ

s
D(t)]T satisfy

ϕs+1
k (t) = ϕs

k+1(t) − a(s+k)s[xs(t) − xs(t − 1)] s ≤ N − D

ϕs
D(t) = bs+D−1 −

k=s−1∑
k=1

a(s+D−1)k xk(t) −
k=N∑
k=s

a(s+D−1)k xk(t − 1) s ≤ N − D + 1,
(27)

for k = 1, . . . , D − 1. Fig. 3 depicts a filter-like structure implementing an iteration (s = s(i),

i = 1, . . . , N , ps = [ps
1, . . . , p

s
D], and t constant) described by equations (25) and (27). Terms

ϕ1
1(t), . . . , ϕ

D−1
1 (t) on top of the delay taps represents the initial values, and are given by (26).

The implementation herein proposed applies to the segmentation g1(D). For segmentations g2(N1, D2),

the same concepts and ideas still apply with the convenient adjustments (replacing each one-dimensional

element by N1-dimensional elements). However, for other segmentations with some degree of nonreg-

ularity, it is no longer possible to implement the OG method with equations (25) and (27). Indeed,

the lack of regularity implies that some (or a lot of) pairs Si, Si+1 do not overlap (or overlap irreg-

ularly) determining the computation of an irregular number of components of Xi(n); this leads to a

higher computational burden.

3.1 A Gauss-Seidel iteration point of view

Introducing definition (26) in equation (25), one obtains

xi(t) = xi(t − 1) +

(
piBs(i) −

k=i−1∑
k=1

piAs(i)k xk(t) −
k=N∑
k=i

piAs(i)k xk(t − 1)

)
, (28)

valid for i = 1, . . . , N and t = 1, 2, . . . Noting that piAs(i)i = 1, the iteration (28), can be rewritten

as

xi(t) =

(
b′i −

k=i−1∑
k=1

a′
ik xk(t) −

k=N∑
k=i+1

a′
ik xk(t − 1)

)
, (29)

where  b′i = piBs(i) i = 1, . . . , N

a′
ik = piAs(i)k i, k = 1, . . . , N.

(30)

13



Equation (29) defines a GS iteration applied to the system A′x = b′, with A′ = TA, b′ = Tb, and

T =



p1
1 p1

2 · · · p1
D 0 · · · · · · 0

0 p2
1 p2

2 · · · p2
D 0 · · · 0

...
. . . . . . . . . . . . . . . . . .

...

0 · · · 0 pN−D
1 pN−D

2 · · · pN−D
D 0

0 · · · · · · 0
... · · · · · · ... A−1

N−D+1

0 · · · · · · 0


. (31)

If matrix T is nonsingular, systems Ax = b and A′x = b′ are equivalent. This happens if and only

if p1
1 ̸= 0, · · · , pN−D

1 ̸= 0 and A−1
N−D+1 exists (in the next section this is shown to be true for PD

systems). Matrix A′ = TA has the following structure:

A′ =



1 0 · · · 0 ∗ · · · · · · ∗
∗ 1 0 · · · 0 ∗ · · · ∗
...

. . . . . . . . . . . . . . . . . .
...

∗ · · · ∗ 1 0 · · · 0 ∗
∗ · · · · · · ∗
... · · · · · · ... ID

∗ · · · · · · ∗


, (32)

where symbol ∗ denotes an arbitrary real number. Defining the splitting A′ = G′ − H ′, where G′ is

the lower triangular part of A′, the GS sequence (29) is also given by

G′x(t) = H ′x(t − 1) + b′. (33)

As D increases, A′ tends to a lower triangular and H ′ to the null matrix. If H ′ is a null matrix, the

solution of A′x = b will be found in just one step; each element xi(1) is recursively determined from

xj(1) for j = 1, . . . , i− 1. However, if H ′ ̸= 0, sequence (33), can be thought of as a balance between

recursiveness and iterativeness.

As D increases, the eigenvalues of A′ tend to be closer to one (in magnitude) than those of A. Thus,

the OG method implicitly implements a preconditioning step on matrix A [30]. This technique is

applied to problems exhibiting slow convergence. For sparse matrices, preconditioning has normally

the disadvantage of increasing the number of non-null elements. Therefore, the reduction in the

number of iterations must compensate for the extra computations per iteration. Given that the OG

method keeps the number of non-null diagonals, convergence is speeded up without increasing the

computational effort.

14



3.2 Computational complexity

Two different procedures implementing the OG method were presented. The first, schematized in

Fig. 3 and given by equations (25) and (27), is implemented directly on the system Ax = b. The

second implements a GS iterative scheme on the system A′x = b′ requiring the previous computation

of A′ = TA and b′ = Tb, with T given by (31).

In order to study the complexity of the above implementations, we define NT as the number of

operations necessary to compute the matrix T and NA′ as the number of operations necessary to

compute matrix A′. After t iterations each method takes the following number of operations Nop(t):

• Filter-type implementation

1. Fully populated matrices

Nop(t) = t × N(2N + 4D) + NT . (34)

The i-th update, takes 2N + 4D real multiplications and real additions: term 2N corre-

sponds to ϕs
D(t) with s ≤ N−D+1 plus the initial conditions ϕ1

k(t) with k = 1, · · · , D−1;

term 4D corresponds to the operations schematized in Fig. 3

2. B-banded matrices

Nop(t) = t × N(2(2B + 1) + 4D) + NT . (35)

• GS equivalent implementation

1. Fully populated matrices

Nop(t) = t × N(2(N − D)) + NT + NA′ + 2ND

≃ t × N(2(N − D)) + NT + NA′ . (36)

The i-th update takes 2(N − D) real multiplications and real additions the OG method

introduces D − 1 zeros in each line and that a′
ii = 1). Term 2ND corresponds to the

operations for computing vector b′.

2. B-banded matrices

Nop(t) = t × N(2(2B)) + NT + NA′ + 2ND

= (t +
D

2B
) × N(2(2B)) + NT + NA′ . (37)

15



Apart from term NA′ + 2ND, which has vanishing relative weight as t increases, the GS equivalent

implementation has less complexity then the filter-type implementation. However, they are both of

the same order: O(N2) for fully populated matrices and O(N) for banded matrices. Concerning NA′ ,

it takes D × N(2(N − D)) operations for fully populated matrices and D × N(2B) for B-banded

matrices; this corresponds to removing NA′ from (36) and (37), and replacing t by (t + D) in the

same expressions. On the other hand, for Toeplitz or quasi-Toeplitz the term NA′ is negligible, even

compared with the complexity of one single iteration.

In conclusion, although having an overhead necessary to compute A′ and b′, the GS equivalent

implementation takes less operations per iteration than the filter-like implementation. Hence, choos-

ing the implementation with less complexity depends on the convergence rate: for convergence rates

close to zero, use implementation depicted in Fig. 3; for convergence rates close to one determine

A′, b′, and apply the GS iteration (29).

Compared with GS, the OG method implemented according to (29) and after t iterations takes

the number of operation to compute matrix T plus, roughly, the complexity of (D + t) iterations of

the GS algorithm. This overhead, is almost always compensated by the greater convergence rate of

the OG method.

4 Convergence Analysis

We have, so far, introduced the OG method, proposed two possible implementations, and studied the

computational complexity of these implementations. This section is devoted to convergence analysis;

the main results are: (1) if A is SPD, the method converges for the exact solution regardless of the

covering; (2) if A−1 = [rij] satisfy rij = 0 for j − i ≥ B, the covering g1(D) with D ≥ B leads to a

null iteration matrix (M = 0). Therefore, the solution x∗ is found in just one iteration.

Assume that A is SPD. Matrices Gi introduced in Definition 2 are a key element in the proposed

iterative scheme. Namely, they have to be invertible. Reminding that Gi = Qi + Di, Di + Di = I,

Qi = DiADi, one can write

xT Gix = xT Dix + xT Qix (38)

= ∥x1∥2
2 + xT

2 Ax2, (39)

where x1 = Dix and x2 = Dix. If x ̸= 0, then x1 ̸= 0 or x2 ̸= 0, or both. If x1 ̸= 0 the right hand

side of (38) is positive; if x1 = 0 then x2 ̸= 0 and xT
2 Ax2 > 0 as A is positive definite. Therefore, if

A is SPD, matrices Gi are nonsingular and the OG method introduced in section 2 is well defined.

16



Notice that matrices Ai introduced in Definition 3 are also positive definite, since they are principal

submatrices of a SPD matrix.

In Section 2 it was shown that the OG method, for SPD systems, is descent, i.e. the convex cost

function F (x) = 1
2
xT Ax−bT x satisfies F(x(n)) ≤ F(x(n−1)). By exploring this feature we now state

that the method is convergent. The idea is that any non-null update ∆(n) = x(n)−x(n−1) decreases

F (x). More precisely, we show that there is a θ > 0 such that F(x(n))−F(x(n− 1)) ≤ −θ∥∆(n)∥2
2.

Since F (x) is bounded below, the magnitude of ∥∆(n)∥ converges to zero. Computing ∇F(x(n)), we

conclude that ∇F(x∞ = limn→∞ x(n)) = 0 which, together with the convex nature of F (x), means

that x∞ is its unique minimum. On the other hand, the unique minimum of F (x) satisfies Ax∗ = b.

Given that A−1 exists, thus, x∗ = x∞ is the desired solution. The following result, shown in the

Appendix, provides sufficient conditions of convergence:

Theorem 1 Let Ax = b be a linear system where matrix A is symmetric and positive definite. Let

x∗ = A−1b be the solution of the system. Then, given an arbitrary initial vector x(0) ∈ ℜN , the

sequence {x(t)} generated by the OG method converges to x∗.

The proof given in the Appendix considers the following generalization of the OG method:

x(n) = (1 − γ)x(n − 1) + γ[G−1
i Hix(n − 1) + G−1

i Dib] (40)

= [γG−1
i Hi + (1 − γ)I]x(n − 1) + γG−1

i Dib, (41)

with γ ∈ (0, 2) and i = saw(n, ng). Notice that (41) is the OG method when γ = 1. If, instead of

a fixed γ, a set of γi, with i = 1, · · · , ng, was considered, such that γi ∈ (0, 2), the convergence of

{x(n)} to the solution x∗, would still hold. Iterative scheme (41), introduces in the OG setting the

successive overrelaxation principle, able to achieve greater convergence rates by choosing convenient

values for parameter γ (or parameters γi). Under the covering g1(D), iteration (41) can be written

as

x(t) = (I − γL′)−1[((1 − γ)I + γU)x(t − 1) + b′], t = 1, 2, · · · , (42)

where −L′ and −U ′ are, respectively, the strictly lower triangular and the strictly upper triangular

parts of matrix A′, introduced in (32). The main line of the argument resembles the one given in

Section 3.3.1, concerning the GS equivalent iterative scheme. It should be pointed out that x(t)

given by (42) can also be implemented, with minor changes, using the scheme developed in Section

3. The same set of concepts applies equally to 2D oriented coverings.

Once convergence is proved, one would like to have some insight on the convergence rate. In

Section 2, it was shown that the OG method is equivalent to to the linear stationary iterative method

17



of first degree

x(t) = Mx(t − 1) + Nb, t = 1, 2, . . . ,

with M given by (11) and N by (12). Assuming SPD systems, Theorem 1 implies that ρ(M) < 1. As

a result, the error e(t) = x(t)−x∗ is given by e(t) = M te(0) (see equation (16)). This considerations

leads to the following result:

Proposition 1 Let Ax = b be a linear system where A is symmetric and positive definite. Then,

for any x(0) ∈ ℜN , the sequence {x(t)} generated by the OG method, converges to x∗ = A−1b at a

geometric rate. In particular, for every ε > 0 there is a norm ∥ · ∥, such that

∥x(t) − x∗∥ ≤ [ρ(M) + ε]t ∥x(0) − x∗∥, t = 1, 2, · · · (43)

where ρ(M) is the spectral radius of matrix M .

Proof 1 Proposition 1 is a immediate consequence of the geometric nature of the error e(t) and of

the properties of matrix norms. Q.E.D.

The OG algorithm has been introduced as a generalization of the GS method, able to achieve

greater convergence rates, while having, roughly, the same complexity. The main line of argument

is that the OG method is able to see D variables farther ahead, and use this information in order

to update the present variable in a more accurate fashion. However, this does not mean that the

convergence rate always increases as D increases. As in block methods [1], also OG method can

exhibit slower converge rates than the GS method. The following example confirms this fact: consider

the matrix A = BBT + C, with B = [exp(−|τ |)], C = [2(−1/2)|τ |] being Toeplitz. For N = 32,

the spectral radius7 ρ(MOG−D) is ρ(MOG−1) = 0.15677, and ρ(MOG−2) = 0.158342, i.e. ρ(MOG−2) >

ρ(MOG−1). Nevertheless, for D = 3, 4, 5, the spectral radius is ρ(MOG−3) = 0.00282, ρ(MOG−4) =

0.00122, and ρ(MOG−5) = 0.00014, respectively.

Choosing a covering is the first step towards the implementation of the OG method. We do not

know any expedite way to obtain a well suited covering for a given matrix. However, the following

result, shown in the Appendix, can help and give hints concerning this matter:

7Whenever the covering g1(D) is under assumption, we denote by MOG−D the respective iteration matrix. The

symbol MBGS−D denotes the BGS iteration matrix having blocks of size D. Iteration matrices of GS and SOR

methods are denoted by MGS and MSOR, respectively. Notice that MGS = MOG−1 = MBGS−1.

18



Theorem 2 Let Ax = b be a linear system, such that any principal submatrix of A in nonsingular.

Moreover, the elements of A−1 = [rij] verify rij = 0 for j − i ≥ B. Given the covering g1(D) such

that D ≥ B, the OG iteration matrix M is null.

This result gives credence to the rationale underlying the OG method sketched in Section 1. The

less xi depends on bi+k, for k > D, the faster the method converges to the true solution.

Theorem 2 considers matrices A−1 having zero elements in its upper right part. In the case of A−1

having zero elements in its lower left part (rij = 0 for j − i ≤ −D), then the OG method under the

covering

g1(D) : Si = {N − i + 1, . . . , N − i − D + 2}, i = 1, . . . , N − D + 1 (44)

finds the solution x∗ in one step. This is, of course, a minor modification of Theorem 2.

5 Numerical Results

This section presents four numerical examples comparing the OG method with other methods. Two

classes of system matrices A = [aij] are studied: (1) Toeplitz matrices; (2) quasi-regular matrices

(those with a high degree of regularity, except for a few elements).

covering g1(D) is used in all examples. We denote the convergence rate of method X ∈ {OG,GS, BGS, SOR}
by R(X) = ln10(ρ(X)), where ρ(X) denotes the spectral radius of matrix MX . Whenever a block

method is being considered the letter D in X − D denotes the block size.

5.1 Toeplitz matrices

Example 1: aij = exp
[
−
(

j−i
a

)2]
.

Table 1 displays results for a =
√

3 and N = 64 (for N = 128 the results are equal up to the

third digit). The condition number (given by κ(A) = σn(A)/σ1(A), where σn(A) and σ1(A) are the

largest and the smallest singular values of A, respectively) of matrix A, for a =
√

3, is κ(A) ≃ 800,

accounting for an ill conditioned matrix.

Elements of A−1 = [rij] verify |rij/rii| ≪ 1, for |τ | = |j − i| > 10. Thus, the high convergence rate

of the OG method for D = 10 is essentially in accordance with Theorem 2, concerning one-sided

banded A−1 matrices. The superior performance of the OG method, compared with BGS, is evident

for D ≥ 1. Compared with the SOR method, the OG has much higher convergence rate for D ≥ 3.

Assume now that a = 1. Although smaller, spectral radii ρ(MGL−D), ρ(MBGS−D), and ρ(MSOR)

exhibit the same behavior evidenced by Table 1. Fig. 4 plots the error components |xi(1) − x∗
i |, for

19



D ρ(MOG−D)
R(OG)

R(GS)
ρ(MBGS−D)

R(BGS)

R(GS)
ρ(MSOR)

R(SOR)

R(GS)

GS≡ 1 0.99227 1 – – 0.93666 8.4

2 0.95354 6.13 0.97307 3.52 –

3 0.85930 19.54 – – –

4 0.71047 44.06 0.95525 5.90 –

5 0.53687 80.15 – – –

10 0.05264 379.42 0.92107 10.60 –

Table 1: Spectral radii and convergence ratios of Example1.

i-th component 
1 8 16 24 32 40 48 56 64

100

|| xi (1) - x i ||2  / Ö N * 

OG-8 

BGS-8 

10-1

10-2

10-3

10-4

10-5

Figure 4: Error components for OG and BGS methods, after the first iteration.

i = 1, · · · , 64, with b = 0, x(0) = [1, · · · , 1]T , and D = 8, after the first iteration, for the BGS and

the OG methods, respectively. The BGS method displays errors much larger tan the the OG error,

for any component. This was to be expected given the large magnitude of ρ(MBGS−8)/ρ(MOG−8) ≃
(0.17)/(2.72 10−6). The BGS error exhibits a saw-type shape with maxima at i = 8, 16, 24, 32, 40, 48,

and 56, and minima at i = 1, 12, 20, 28, 36, 44, and 52. A crude justification8 is the following: the

error of each variable inside each block increases with the errors of variables outside the block and

decreases as the distance to the nearest boundary grows. In contrast, the OG method keeps the

distance to the variable with larger error at a constant value of 8; the exception is the last block, this

not being a problem (for both methods) if the variables in the last group do not depend on distant

groups.

The preconditioned conjugate gradient(PCG) method, in the case of Toeplitz systems, can be ap-

8This argument is valid for problems displaying local interactions.

20



plied with great success (PCG) [16]. Namely, if the matrix is generated by a rational sequence

(which is always the case of banded matrices), then the PCG complexity is O(N log N) [16], [31].

To be more precise, considering the preconditioner K1 proposed in [16], the PCG method takes

N(2(2B + 1) + 6 + 6 ln2 N) real additions and multiplications9 per iteration. The precondition-

ing step takes 4.5 N ln2 N addictions plus 1.5 N ln2 N multiplications. On the other hand, the OG

method (implemented by its GS equivalent) takes N(2(2B)) operations per iteration plus a neg-

ligible overhead necessary to compute A′ (recall that matrix A′ is quasi-Toeplitz) and b′. Thus,

if limN→∞ ρGS < 1, the OG method has, at least asymptotically, less complexity than the PCG

method. On the other hand, for a given N , it can happen that the OG method produces a solution

with acceptable error, with fewer operations than the PCG. This is illustrated in the next example.

Example 2: aij = (3/5)|j−i| + (−1/2)|j−i|, j − i ≤ 5 and aij = 0 for j − i ≥ 6.

D ρ(MGL−D)
R(OG)

R(GS)
ρ(MBGS−D)

R(BGS)

R(GS)
ρ(MSOR)

R(SOR)

R(GS)

GS≡ 1 0.29837 1 – – 0.29197 1.018

2 0.27067 1.08 0.28569 1.04 –

3 0.02351 3.10 – – –

4 0.00855 3.93 0.18485 1.34 –

5 0.00822 3.97 – – –

10 0.00004 8.37 0.11790 1.77 –

Table 2: Convergence ratios for Example 2.

Results displayed in Table 2 were computed using N = 32. As a general remark, the convergence

rates exhibit the same pattern as the ones of Table 1. Again, we would like to recall the attention

to the spectral radius ρ(MOG−4) = 0.00855. The elements of matrix A−1 = [rij] satisfy |rij/rii| ≪ 1

if |j − i| ≥ 4. Thus, one can say that ρ(MGL−4) = 0.00855 is in accordance with Theorem 2. Fig.

5 plots the evolution of the Euclidian error ∥x(t) − x∗∥2 for GS, CG, OG, and PCG methods. The

horizontal axis is graduated with a scale representing the ratio between the the number of operations

per iteration Nop (of the different methods) and the number of operations per iteration of the OG

method. For N = 32, B = 5 and D = 4 that ratio takes the value 2.9. The number of operations

9The term 6N ln2 N account for the preconditioning step; term N(2(2B+1)) account for the matrix-vector product;

term 6N accounts the remaining vector-vector product. Notice that, in the case of banded matrices, its is better

compute directly matrix-vector products than embedding it in a circular convolution an using FFT techniques to do

it. Indeed, this last procedure would lead to a complexity O(N ln N) instead of the actual N(2(2B + 1)).

21



0 5 10 15 20 25
30

     -60
1. 10

     -49
1. 10

     -38
1. 10

     -27
1. 10

     -16
1. 10

0.00001

        Nop 

    N[2(2B)] 

||x(t) - x*||2 

OG-4 

GS 

* • • • * * • 
* 

• * • • * 

* 

* • • 

* 
* 

• 

* 
* 

• • 

 →
   

*
 

CG 

PCG 

0 

Figure 5: Euclidian error of the OG, GS, CG, and PCG methods, for successive iterations.

per iteration, for the GS and OG methods, are taken to be equal. The same is done with CG and

PCG methods. Since the CG method takes N(4(2B +1))+6) operations per iteration, the true CG

convergence rate is even worse than the one plotted in Fig. 5 .

The PCG method finds the exact solution at 11-th iteration. This result is in accordance with

[16]: matrix A is generated by a rational sequence with (p = 5, q = 0). Thus, the spectrum of K−1
1 A

has at most 2 max(p, q) eigenvalues different from one, and, consequently, the solution is found, at

most, in 1+2 max(p, q) iterations. However, after the number of operations that PCG method needs

to reach the 11-th iteration, the OG method outputs a solution with an error smaller that 10−50.

We also ran this example with N = 128. The ratio ρ(MOG−4, N = 64)/ρ(MOG−4, N = 32) is 1.035.

On the other hand, PCG method still converges in 1 + 2 max(p, q) iterations; however, it now takes

3.5 times more operations than the OG method. This would allow an error attenuation better than

10−70 if the OG method was run with the same number of operations.

It should be stressed that, given a system with dimension N , the comparison between PCG and OG

method is not always as favorable to the latter. In fact, in order to achieve a competitive convergence

ratio, it might be necessary such a high D that applying the OG method is no longer effective.

5.2 Quasi-regular matrices

Typically, in restoration problems a degraded version (the observed signal/image) of the original

signal/image x is filtered in order to produce an estimate of the latter. Assuming that the data has

22



zero mean, is observed under a linear operator B, and is contaminated with independent Gaussian

zero mean noise, then, different approaches such as Wiener filtering [32], constrained least square

[17], Bayesian methods [17], the maximum entropy principle [32], or the regularization approach [17],

[18] demand the solution of the linear system Ax = b, where x is the estimate, b depends on the

observed data, and A is of the form

A = BBT + ηP. (45)

The meaning of η and P depends on the underlying paradigm. In the Bayesian framework matrix

P models the a priory knowledge, and η depends on the noise to signal ratio [17]. On the other

hand, in the regularization approach η is the regularization parameter and P is a matrix expressing

constraints on unknown vector x [18].

In the one-dimensional example we are about to present, P express the constraints on pairs of

components (xi, xi+1): either (xi+1, xi) is continuous (the difference xi+1 − xi must be small), or

(xi+1, xi) is discontinuous (the difference xi+1 − xi can take arbitrary values). The i-th row of P

express the continuity or discontinuity constraint as follows:

1. [. . . , 0,−1, 2,−1, 0, . . .], if components (xi−1, xi, xi+1 are continuous

2. [. . . , 0, 0, 1,−1, 0, . . .], if components (xi, xi+1) are continuous, and components (xi−1, xi) are

discontinuous

3. [. . . , 0,−1, 1, 0, 0, . . .], if components (xi, xi+1) are discontinuous, and components (xi−1, xi) are

continuous

4. [. . . , 0, 0, 0, 0, 0, . . .], if components (xi, xi+1) are (xi−1, xi) are discontinuous

Model (45) with P just presented is related with the weak string model [33]. This model aims

at the joint estimation of the discontinuities and the vector x. The exact solution, (carried out

by maximizing a proper objective function), is analytically and computationally very demanding.

Iterative algorithms achieving suboptimal solutions [33], [34], [35] have been proposed. A common

procedure to all this algorithms is that, in each iteration, they need to compute the inverse of a

matrix of the form (45). Matrix A is ill-conditioned for low signal to noise ratios, or ill-conditioned

matrices BBT , this leading to a high computational burden, concerning A−1 computation.

The following one-dimensional instance of (45) is going to be considered:

Example 3: B = [bij], with bij = exp[−( |j−i|
a

)2] (Gaussian blur). We assume that discontinuities

occur at i = 9, 14, 16, 19, 20, 30, 31, and that a = 3 and η = 0.1.

23



D ρ(MGL−D)
R(OG)

R(GS)
ρ(MBGS−D)

R(BGS)

R(GS)
ρ(MSOR)

R(SOR)

R(GS)

GS≡ 1 0.99043 1 – – 0.97815 2.30

2 0.87747 13.59 0.99167 0.87 – –

3 0.85908 15.80 – – – –

4 0.68044 40.04 0.98123 1.97 – –

5 0.63302 47.55 – – – –

10 0.16127 189.75 0.97884 2.22 – –

Table 3: Spectral radii and convergence ratios for Example 3.

For the present setting, the condition number of A is κ(A) = 1742.52, reflecting a severely ill

conditioned matrix. We call the attention for the very low converge rate of the GS method: R(GS) =

0.00417. Notice that, with this figures, an attenuation of 10−6 over the initial error would take,

approximately 1450 GS iterations. The ratio R(OG)/R(GS) for D = 4 is 40. Hence, the same

attenuation of 10−6 would take, approximately, 36 OG iterations. Gains of SOR and BGS methods

(even for D = 10) over GS are, by far, smaller than the OG ones.

By varying parameter η in (45) from zero to ∞ one can give more importance to BBT or, instead,

to P . Table 4 displays the ratio R(OG)/R(GS) for D = 4, a = 3, and η = 10i with i = −2, . . . , 2.

Table 5 displays the ratio R(OG)/R(GS) for D = 4, η = 0.1, and a = 10i with i = −1, 0, 1.

Results, displayed in Tables 4 and 5 have the same behavior: they grow monotonically with the

condition number κ(A). Thus, the more ill-conditioned the system matrix, the greater the OG

method convergence rate compared with that of the GS method.

(a = 3) η κ(A)
R(OG)

R(GS)

10−2 8525.05 234.83

10−1 1742.52 40.04

100 512.83 10.58

101 305.16 8.87

102 1886.16 27.12

Table 4: Convergence ratios of Example 3, for a = 3, D = 4, and η variable.

Example 4: Similar to Example 3, but with N = 64 and the discontinuities occuring at sites

9, 14, 16, 19, 20, 30, 31, 41, 46, 48, 52, 53, 62, 63. Notice that for i ≥ 32, the string is broken at sites

displaced of a value 32 relative to Example 1.

24



(η = 0.1) a κ(A)
R(OG)

R(GS)

10−1 1.39 4.93

100 11.58 13.52

101 1.20106 49.65

Table 5: Convergence ratios of Example 1, for η = 0.1, D = 4, and a variable.

The results from Example 3, displayed in Tables 3, 4, and 5, are similar of those of Example 5, up

to the third digit.

6 Concluding Remarks

In this paper, we proposed an iterative algorithm for solving large systems of linear equations.

Although applicable to a wide class of system matrices, it was firstly thought for symmetric and

positive definite ones. The i-th and (i + 1)-th iterations minimize the quadratic function F (x) =

1
2
xT Ax− bT x with respect to the overlapped groups of variables Si and Si+1, respectively. Hence the

name overlapped group (OG).

By overlapping groups in a suitable manner the following properties of the OG method emerge:

1. In the i-th iteration only a few components of the set Si need to be computed. By exploring this

feature the method can be implemented with a complexity of the order of the block iterative

(e.g. the block Gauss-Seidel algorithm) methods complexity.

2. The distance between the component xi(t) being updated in iteration t and the components

xj(t − 1) from which xi(t) depends, is kept constant, or above of a minimum positive number

D. Consequently, the less xi(t) depends on xj(t − 1) the faster the OG method converges.

The characteristic just emphasized is not presented in the block iterative methods; given a block

of size D, there are variables whose distance in the sense above defined, ranges in the interval

1 < d(i, j) < D. This fact is a major shortcoming of block iterative methods, concerning its

convergence rate.

The choice of the iteration groups, adapted to each type of matrix, plays a central role in the OG

method. Concerning this matter, we introduced the concept of ordered covering, which is a choice and

ordering of the iteration groups. Two types of coverings were then proposed: (1) the one-dimension

oriented covering g1(D); (2) the two-dimension oriented covering g2(D1, D2). In the case of covering

g1(D), only one component need to be computed per iteration; in the case of covering g2(D1, D2),

25



D2 components have to be computed per iteration. In 2D problems, if D1 has the size of a line, each

line can be treated as if it was a single component (the same is true for columns).

Assuming covering g1(D), two implementations were proposed: (1) based on the system Ax = b;

(2) based on a Gauss-Seidel equivalent system A′x = b′, with A′ = TA, b′ = Tb, and T being an

upper triangular D-banded matrix. The complexities of both implementations are of the same order;

the first is suited for high convergence rates, and the second for slow convergence rates. The analysis

of matrix A′ led to the conclusion that the OG method can be thought of as a balance between

recursiveness and iterativeness.

The product TA can also be viewed as preconditioning step on matrix A. Given that the OG

method preserves the number of non-null diagonals, convergence is speeded up without increasing

the computational effort in each iteration, which is unlike in classical preconditioning.

It was shown that the method converges for two classes of problems: (1) symmetric positive definite

systems; (2) systems in which any subsystem is nonsingular and whose inverse matrix elements are

null above (below) some upper (lower) diagonal. In class (2) the exact solution is reached in just

one step. If the hypotheses of item (2) are not fulfilled, but instead elements of A−1 = [rij] verify

|rii/rij| ≪ 1 for j − i ≥ D, then it is predictable that the covering g1(D) leads to a high convergence

rate. This was put in evidence by means of numerical examples.

26



A Appendix

A.1 Proof of Theorem 1

Let {x(n)} and x∗ = A−1b be, respectively, the sequence generated by the OG iteration defined in (5)

and the solution of the SPD system Ax = b. The quadratic function F (x) = 1
2
xT Ax− bT x computed

at x(t) = e(t) + x∗ is given by 1
2
(eT (t)Ae(t) − bT x∗). Thus, we assume that vector b is zero, since

it only represents a shift on F (x), and show that F(x(t)) = 1
2
x(t)T Ax(t) → 0 as t → ∞, for an

arbitary x(0). Since A−1 exists, this is equivalent to showing that x(t) → 0, for any x(0).

Recall that the components being updated at the n-th iteration are those whose indices in the set

Si, with i = saw(n, ng) (see OG definition in page 7). Formula (5) is equivalent to

x(n + 1) = x(n) + γs(n), n = 0, 1, . . . (46)

where γ = 1 for the OG method, and, since b = 0,

s(n) = (G−1
i Hi − I)x(n). (47)

Expanding F (x) about x(n) yields

F(x(n) + γs(n)) = F(x(n)) + γs(n)T Ax(n) +
γ2

2
s(n)T As(n). (48)

Having in attention that s(n) = Dis(n) and that DiA = (Qi + Qi), one has successively

s(n)T Ax(n) = s(n)T DiAx(n) (49)

= s(n)T (Qi + Qi)x(n) (50)

= s(n)T (Gi − Hi)x(n) (51)

= −s(n)T Gis(n). (52)

Noting that DiADi = DiGiDi, then

s(n)T As(n) = s(n)T DT
i ADis(n) (53)

= s(n)T DiADis(n) (54)

= s(n)T Gis(n). (55)

Hence, equation (48) becomes

F(x(n) + γs(n)) = F(x(n))− γ
(
1 − γ

2

)
s(n)T Gis(n). (56)

27



Assuming that γ ∈ (0, 2), and defining β = mini λ
i
1 > 0, with λi

1 being the smallest eigenvalue of Gi,

one can write the following inequality

F(x(n) + γs(n)) ≤ F(x(n))− γ
(
1 − γ

2

)
β ∥s(n)∥2

2, (57)

or

0 ≤ F(x(n) + γs(n)) ≤ F(x(0))− γ
(
1 − γ

2

)
β

n∑
i=0

∥s(i)∥2
2, (58)

which determines that
i=∞∑
i=0

∥s(i)∥2
2 ≤

1

β

F(x(0))
γ
(
1 − γ

2

) < ∞. (59)

Equation (59) implies that limn→∞ s(n) = 0. Thus, it follows from (46) that limn→∞[x(n+1)−x(n)] =

0, which is equivalent to limn→∞ A[x(n + 1)− x(n)] = 0. It is clear that Gis(n) = −DiAx(n). Given

that Gi is nonsingular, another consequence of having limn→∞ s(n) = 0 is that limn→∞ DiAx(n) = 0,

with i = saw(n, ng).

Consider the sum

u(n) =

ng∑
i=1

DiAx(n + i − 1), (60)

which has null limit: limn→∞ u(n) = 0. Since limn→∞ A[x(n + 1)− x(n)] = 0, terms Ax(n + k), with

0 ≤ k < ng can recursively be replaced by Ax(n) + εk(n), where

εk(n) = A

k∑
i=1

x(n + i) − x(n + i − 1). (61)

Notice that

lim
n→∞

εk(n) =
k∑

i=1

lim
n→∞

A[x(n + i) − x(n + i − 1)] = 0. (62)

Therefore, sum (60) becomes

0 = lim
n→∞

u(n) = lim
n→∞

ng∑
i=1

Di[Ax(n) + εi−1(n)] (63)

= lim
n→∞

(
ng∑
i=1

Di

)
Ax(n) + lim

n→∞

ng∑
i=1

Diεi−1(n). (64)

Given that
∑ng

i=1 Di has rank N , and that limn→∞ εi(n) = 0, then limn→∞ x(n) = 0. Q.E.D.

A.2 Proof of Theorem 2

The iteration Matrix M is given by

M =
k=1∏
k=ng

Mk, with Mk = G−1
k Hk. (65)

28



Matrices G−1
k with k = 1, · · · , ng exist, since their determinants are those of submatrices obtained

from A by choosing rows r and columns c, such that r, c ∈ Sk. But these submatrices have, by

hypothesis, non-null determinant.

Denote the i-th row of matrix Mk by [Mk]i. Having in account Definition 2 (matrices Gk and Hk),

and remembering that segmentation g1(D) is under assumption, it follows that the first k − 1 rows

verify

[Mk]i = [δ(j − i), j = 1, . . . , N ] = ei, j = 1, . . . , k − 1. (66)

Suppose that

[Mk]k = [∗, · · · , ∗︸ ︷︷ ︸
k−1

, 0, · · · , 0], (67)

where the symbol ∗ denotes an arbitrary real number. An immediate consequence of (66) and (67)

is that

[MkMk−1 · · · ,M1]j = 0, 1 ≤ j ≤ k, k < ng. (68)

This can be checked by finite induction. On the other hand, segmentation g1(D) implies that

[Mng ]j = [∗, · · · , ∗︸ ︷︷ ︸
N−D

, 0, · · · , 0], ng ≤ j ≤ N. (69)

Thus, it follows that M = 0.

To finish the proof, assumption (67) has to be proved. Since A−1 and G−1
k , k = 1, . . . , ng exist,

then

DkA = (Gk − Hk), (70)

Dk = (Gk − Hk)A
−1, (71)

G−1
k Dk = (I − G−1

k Hk)A
−1, (72)

[G−1
k Dk]k = [A−1]k − [G−1

k Hk]kA
−1. (73)

Consider matrix M1; rows [G−1
1 D1]1 and [A−1]1 have the following pattern:

[G−1
1 D1]1 = [∗, · · · , ∗︸ ︷︷ ︸

D

, 0, · · · , 0], (74)

[A−1]1 = [∗, · · · , ∗︸ ︷︷ ︸
B

, 0, · · · , 0], (75)

where D ≥ B by hypothesis. Thus, one must have, from (73)

[G−1
1 Hk]1A

−1 = [∗, · · · , ∗︸ ︷︷ ︸
D

, 0, · · · , 0]. (76)

29



Writing [M1]1 as

[M1]1 = [0, · · · , 0︸ ︷︷ ︸
D

, αD+1, . . . , αN ], (77)

equality (76) is equivalent to

[αD+1, . . . , αN ]A−1
1 = 0, (78)

where A−1
1 stands for the submatrix of A−1 containing all rows r and all column c, such that r /∈ S1

and c /∈ S1. It is straighforward verifying that A−1
1 is non-singular, given that, by hypothesis, the

correspondent submatrix defined in A is non-singular. Then vector [αD+1, . . . , αN ] = 0. This shows

that [M1]1 = 0. For the remaining lines, the argument follows similar steps. Q.E.D

References

[1] D.M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

[2] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation. Numerical Methods, Pren-

tice Hall, New Jersey, 1989.

[3] O. Axelsson, Iterative Solution Methods, Cambridge University Press, New York, 1996.

[4] G. H. Golub and C. F. Loan, Matrix Computations, Johns Hopkins University Press, 1983.

[5] J. Durbin, “The fitting of the time-series models,” Rev. Inst. Int. de Stat., vol. 28, pp. 233–344,

1960.

[6] N. Levinson, “The Wiener (root mean square) error criterion in filter design and prediction,”

J. Math. Phys., vol. 25, pp. 261–278, 1947.

[7] G. S. Ammar and W. P. Gragg, “Superfast solution of real positive definite Toeplitz systems,”

SIAM J. Matrix Anal. Appl., vol. 9, pp. 61–76, 1988.

[8] F. D. Hoog, “A new algorithm for solving Toeplitz systems of equations,” Lin. Algeb. Appl.,

vol. 88/89, pp. 123–138, 1987.

[9] B. W. Dinkinson, “Efficient solution of linear equations with banded Toeplitz matrices,” IEEE

Trans. Acoust. Speech Signal Process., vol. 27, pp. 421–422, 1979.

[10] W. E. Trench, “Solution of systems with Toeplitz matrices generated by rational functions,”

Linear Algebra Applications, vol. 74, pp. 191–211, 1986.

30



[11] W. E. Trench, “Toeplitz systems associated with the product of a formal Laurent series and a

Laurent polynomial,” SIAM Journal on Matrix Analysis and Applications, vol. 9, pp. 181–193,

1988.

[12] M. R. Hestenes and E. L. Stiefel, “Methods of conjugate gradients for solving linear systems,”

J. Res. Nat. Bur. Standards Sect. 5, vol. 49, pp. 409–436, 1952.

[13] D. Luenberger, Linear and Nonlinear Programming, Addison Wesley Publishing Company,

Reading, Massachusetts, 1984, 2nd Edition.

[14] G. Strang, “A proposal for Toepliz matrix calculations,” Stud. Appl. Math., vol. 74, pp. 171–176,

1986.

[15] T. F. Chan, “An optimal circular preconditioner for Toeplitz systems,” SIAM J. Sci. Stat.

Comput., vol. 9, pp. 766–771, 1988.

[16] T. Ku and C. Kuo, “Design and analysis of optimal Toeplitz preconditioners,” IEEE Transac-

tions on Signal Processing, vol. 40, pp. 129–141, 1992.

[17] H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice Hall, New Jersey, 1977.

[18] A. Tikhonov, A. Goncharsky, and V. Stepanov, “Inverse problems in image processing,” in

Ill-Posed Problems in the Natural Sciences, A. Tikhonov and A. Goncharsky, Eds., pp. 220–232.

Mir Publishers, Moscow, 1987.

[19] T. Chan and J. Shen, Image Processing and Analysis: Variational, PDE, Wavelet, and Stochas-

tic Methods, SIAM, 2005.

[20] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englehood Cliffs, NG, 1962.

[21] R. Beauwens, “Iterative solutions methods,” Appl. Numer. Math., vol. 51, pp. 437–450, 2004.

[22] A. M. Ostrowski, “Iterative solution of linear systems of functional equations,” J. Math. Anal.

App., vol. 2, pp. 351–369, 1961.

[23] L. Lapidus and G. F. Pinder, Numerical Solution of Partial Differential Equations in Science

and Engineering, John Wiley & Sons, New York, 1982.

[24] D. O’Leary and R. E. White, “Multi-splittings of matrices and parallel solutions of linear

systems,” SIAM J. Algebric Discrete Math., vol. 6,, pp. 630–640, 1985.

31



[25] O. A. Mcbryan and E. Van de Velde, “Parallel algorithms for elliptic equations,” Comm. Pure

Appl. Math., vol. 38, pp. 769–795, 1985.

[26] M. Newmann and R. J. Plemmons, “Convergence of parallel multisplittings and iterative meth-

ods for M-matrices,” Linear algebra Appl., vol. 88/89, pp. 559–573, 1987.

[27] R. E. White, “Multisplittings of a symmetric positive definite matrix,” SIAM J. Matrix Anal.

Appl., vol. 11, pp. 69–82, 1990.

[28] L. J. Hayes, “A vectorized matrix-vector multiply and overlapping block iterative method,” in

Supercomputer Applications, R.W. Numrich, Ed., pp. 91–100. Plenum Press, New York, 1984.

[29] W. Hackbush, Multi-Grid Methods and Applications, Springer-Verlag, New York, 1985.

[30] D. J. Evans, Preconditioning Methods: Analysis and Applications, Gordon and Breach, New

York, 1983.

[31] T. Ku and C. Kuo, “Spectral properties of preconditioned rational Toeplitz matrices,” SIAM

Journal on Matrix Analysis and Application, vol. 14, pp. 146–165, 1993.

[32] A. Jain, Fundamentals of Digital Image Processing, Prentice Hall, Englewood Cliffs, 1989.

[33] A. Blake and A. Zisserman, Visual Reconstruction, MIT Press, Cambridge, M.A., 1987.

[34] D. Geiger and F. Girosi, “Parallel and deterministic algorithms from MRF’s: Surface recon-

struction,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-13,

no. 5, pp. 401–412, May 1991.

[35] M. Figueiredo and J. Leitão, “Simulated tearing: an algorithm for discontinuity preserving

visual suraface reconstruction,” in Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition – CVPR’93, New York, June 1993, pp. 28–33.

32


