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ABSTRACT

Many imaging techniques,e.g., interferometric synthetic
aperture radar, magnetic resonance imaging, diffraction to-
mography, yield interferometric phase images. For these
applications, the measurements are modulo-2p, wherep is
the period, a certain real number, whereas the aimed infor-
mation is contained in the true phase value. The process of
inferring the phase from itswrappedmodulo-2p values is
the so-calledphase unwrapping(PU) problem. In this paper
we present a graph-cuts based PU technique that uses two
wrapped images, of the same scene, generated with different
periodsp1, p2. This diversity information allows to reduce
the ambiguity effect of the wrapping modulo-2p operation,
and is extensible to more than two periods. To infer the origi-
nal data, we assume a first order Markov random field (MRF)
prior and a maximuma posteriori probability (MAP) opti-
mization viewpoint. The employed objective functionals have
nonconvex, sinusoidal, data fidelity terms and a non isotropic
total variation (TV) prior. This is an integer, nonconvex opti-
mization problem for which we apply a technique that yields
an exact, low order polynomial complexity, global solution.
At its core is a non iterative graph cuts based optimization
algorithm. As far as we know, all the few existing period
diversity capable PU techniques for images, are either far too
simplistic or employ simulated annealing, thus exponential
complexity in time, optimization algorithms.

1. INTRODUCTION

There are nowadays many applications based on phase im-
ages,e.g., interferometric synthetic aperture radar (InSAR)
[1], magnetic resonance imaging (MRI) [2], adaptive optics
[3], vibration and deformation measurements [4], and diffrac-
tion tomography [5]. InSAR is being successfully applied,
e.g., to the generation of digital elevation models (DEM), and
in the monitoring of land subsidence; among the plethora of
MRI applications, we emphasize venography (angiography
as well) [6] and tissues elastography [7]; concerning adap-
tive optics, we point up applications in medicine and industry
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[8]; interferometry based vibration and deformation measure-
ments is widespread among metrology techniques; diffrac-
tion tomography finds application in,e.g., geophysical sub-
surface prospection and 3D microscopic imaging. In all of
these imaging systems, the acquisition sensors read only the
cosine and the sine components of the absolute phase; that is,
we have access only to the phase modulo-2π, the so-called
interferogram. Besides the sinusoidal nonlinearity, the ob-
served data is corrupted by some type of noise. Due to these
degradation mechanisms, phase unwrapping is known to be
a very difficult problem. In fact, if the magnitude of phase
variation between neighboring pixels is larger than2π, i.e.,
the so-called Itoh condition [9] is violated, then the inference
of the2π multiples is an ill-posed problem. These violations
may be due to undersampling, discontinuities, or noise.

In case we possess two wrapping observations, modulo-
p1, and modulo-p2, of the same signal, by the Chinese re-
mainder theorem [10], under certain circumstances, it is pos-
sible to compute the original signal based on those wrapped
observations only; the diversity information shortens theam-
biguity effect of wrapping observation.

The main contribution of this paper is to present a fast,
MAP-MRF based, PU technique that employs the diversity
rationale, and to illustrate the boost in the PU performance
that the diversity concept brings; the speed enhancement is
mainly due to the applied graph-cuts based optimization.

In the next Section we make a quick overview of the di-
versity concept. Then, in Section 3 we present our technique,
namely we will motivate and summarize the chosen graph-
cuts algorithm. In Section 4 we show some representative
experimental results and, finally, in Section 5 we draw con-
cluding remarks.

2. DIVERSITY

Several signal and image processing techniques employ di-
versity, which consists of signaling some event or target,
e.g., imaging an object, by using diverse relevant parameters.
In this paper we consider frequency diversity which is used
in various areas, such as, e.g., MRI, echographic Doppler,
weather radar, and InSAR.



Namely, we deal with two (or more) frequenciesF1 =
p/q, F2 = r/s where{p, q, r, s} ∈ N

1. For each frequency,
we adopt, as in [11], an observation data model to be given by

Zi = ejFiφ + n, (1)

whereφ is the true phase, andn is zero-mean, circular, Gaus-
sian noise [11].

For each frequency the log-likelihood function, is2π/Fi -
periodic. Again referring to [11] we take each log-likelihood
to be given by (2)

f(φ|ηi) = −λi cos (ηi − Fiφ) + ci, (2)

whereφ stands for the, to be inferred, absolute phase,ηi =
angle(Zi) (the observed phases),λi ∝ |Zi|, Fi stand for the
employed frequencies, andCi are irrelevant constants. For
our purpose of illustrating diversity PU, we will assumeλi =
1, without loss of generality.

For simplicity we use two frequencies only; assuming in-
dependence on the random variables that account for the ob-
servations (1), it follows that the loglikelihood is given by (3)

f(φ|η1) + f(φ|η2) = − cos (η1 − F1φ) − cos (η2 − F2φ) ,
(3)

we note thatF1φ = η1 + 2kπ, then with the change of vari-
ablesφ′ ≡ F1φ we get (4)

f(φ′|η1)+f(φ′|η2) = − cos(η1−η1+2kπ)−cos

(

η2 −
F2

F1
φ′

)

,

f(φ′|η1) + f(φ′|η2) = −1 − cos

(

η2 −
F2

F1
φ′

)

, (4)

in (4) we may discard the−1 term, which leads us to the
integer variable k dependent observation model

− cos

(

η2 −
F2

F1
(η1 − 2kπ)

)

, (5)

that will be part of the functional to minimize in MAP-MRF
framework, as we will refer to in Section 3.

We have already mentioned that the advantage of fre-
quency diversity is to reduce the ambiguity effect of the
wrapping modulo-2p operation. Stating it more clearly, it is
easy to show that the sum of two cosine functions, having as
in (3) different frequenciesF1 = p/q andF2 = r/s, where
{p, q} , {p, r}, {q, s}, and{r, s} are coprime integers2, re-
sults in a third periodic function whose period isq × s; as the
initial functions do have periods of respectivelyq ands, we

1Rigorously,F1 andF2 can be irrational as long as their quotient is ra-
tional. However this does not take any generality in what follows.

2Two integer numbers are said to be coprime if their greatest common
divisor is the unity.

Fig. 1. Ambiguity reduction by summing two periodic func-
tions: the beat effect.

conclude that the period is extended and, so, the ambiguity
reduced. Fig.1 illustrates this effect by plotting the function
f(t) = cos(t) + cos(2/5 t), t ∈ [−8 8] with t in 2π rad
units. It can be seen that the period has been extended five
times (the initial periods were2π rad and5 × 2π rad). This
“beat production”, well known in wave physics, can also be
understood by the Chinese remainder theorem [10].

It is a well known behavior,e.g., from wave phenomena,
that the greater the beat period extension, the smaller the dif-
ference between global and local maxima. Furthermore, it is
also well known that beat period extension brings noise am-
plification. This trade-off should then be taken into account.

3. PROPOSED ALGORITHM

3.1. Related work

Definitely, frequency diversity based PU techniques are
scarce. We are aware only of [12], [13], and [14] pub-
lished in 1994, 1998 and 2002, respectively. Regarding the
first [12] it proposes three very simple (and interesting) al-
gorithms that, nonetheless, are error prone. With respect
to the second [13], it is a multidimensional (accounting for
multifrequency) version of the minimumL2 norm type of PU
algorithm [15], with relaxation to the continuum that is well-
known [15] to give rise to solving a Poisson equation. The
weaknesses of this approach are long-familiar, in particular
the oversmoothing of high phase rate slopes and disconti-
nuities, which is further amplified by the proposed previous
low-pass filtering stage (see [11] for a deeper discussion on
this problem). Concerning [14], it consists of an algorithm
based on a maximum likelihood estimation technique, whose
goal is to approximate the unknown (true) surface by means



of local planes. The approach assures the uniqueness of the
solution even accounting for high phase rate slopes or dis-
continuities. However, the global optimization required to
compute the maximum likelihood, by suggestion of the au-
thors, is to be achieved by simulated annealing, which is a too
much slow optimization technique to tackle this problem, for
which,e.g., graph-cuts techniques are much more suited.

3.2. Graph-cuts formulation

Let us consider the undirected graph(V, E) where the set of
nodesV represents image pixels and the set of edgesE rep-
resents pairs of neighboring pixels (horizontal and vertical in
our case).

In Section 2, the loglikelihood expression (5) was ob-
tained based on a bayesian model ([11]) and for two sources
(two frequencies). Considering that the prior is a MRF de-
fined on(V, E), then the logarithm of the posterior density is,
in our case, given by

E(k) ≡
∑

i∈V

− cos

(

η2i
−

F2

F1
(η1i

− 2kiπ)

)

+ µ
∑

(i,j)∈E

Vij

(

φ′
i, φ

′
j

)

, (6)

whereφ′ = (φ′
1, φ

′
2, . . . , φ

′
|V|), φ′ = F1φ = η1 + 2kπ, we

takeVij

(

φ′
i, φ

′
j

)

= |ki − kj |, the so-called non-isotropic TV,
and finallyµ is the regularization parameter that sets the rela-
tive weight between the data fidelity and the prior terms.

We are aware of only three integer optimization algo-
rithms, that are able to provide a global minimum for a
posterior energy like (6), which is composed by a non-convex
data fidelity term and a convex prior potential. Those algo-
rithms were introduced in [16], [17], and [18]. Herein, we
refer to the last one [18]. As long as the energy is a levelable
function, i.e., a function that admits a decomposition as a sum
on levels, of functions of its variables level-set indicatrices at
current level (see [18]), it is easy to build a graph such that
its maxflow is the sought global minimum. For the sake of
simplicity we do not describe the above mentioned energy de-
composition on level-set dependent functions, as we will not
describe the graph construction. We remark only that there
exist plenty of low order polynomial complexity maxflow
algorithms, and it is simple to proof that non-isotropic TV is
a levelable function.

4. EXPERIMENTAL RESULTS

Fig. 2 illustrates the effectiveness of the proposed approach
to phase unwrapping (we have employed a regularization pa-
rameterµ = 0.1). In Figs. 2 (a) and 2 (b) we show the images
of a wrapped gaussian having a50 × π height peak. Each of
those wrapped images is generated according to an InSAR

observation statistics (see, e.g., [11]) and with gaussiannoise
(Signal to noise ratio (SNR) of10 dB); they differ in the rel-
ative signal frequency employed in each of them which is
F1 = 1 and F2 = 4/5 respectively. An aliasing effect is
quite clear in both. In Fig. 2 (c) we show the unwrapping re-
sult by limiting the signal excursion to five2π levels only. It
can be seen that with five levels (five is the ambiguity interval
extension factor used) there is no more aliasing. In Fig. 2 (d)
we show the result of the our proposed diversity graph cuts
based algorithm; it can be seen that the unwrapping is perfect
even in the presence of noise (SNR= 10 dB). Furthermore
the result was obtained in a few seconds on a2.0 GHz dual
core Pentium.

5. CONCLUDING REMARKS

The presented results illustrate and indicate that frequency
diversity can greatly enhance the phase unwrapping perfor-
mance. Furthermore, the employed graph-cuts global opti-
mization in the MAP-MRF scenario proves to be very fast.
Given the growing importance of phase imaging techniques
diversity research should be prosecuted. In future work we
intend to explore generalized kinds of diversity like temporal
PU [19] and more generally multidimensional PU.

6. REFERENCES

[1] P. Rosen, S. Hensley, I. Joughin, F. LI, S. Madsen,
E. Rodriguez, and R. Goldstein, “Synthetic aperture
radar interferometry,”Proceedings of the IEEE, vol. 88,
no. 3, pp. 333–382, March 2000.

[2] P. Lauterbur, “Image formation by induced local in-
teractions: examples employing nuclear magnetic res-
onance,”Nature, vol. 242, pp. 190–191, March 1973.

[3] D. L. Fried, “Adaptive optics wave function recon-
struction and phase unwrapping when branch points are
present,” Optics Communications, vol. 200, no. 1, pp.
43–72, December 2001.

[4] S. Pandit, N. Jordache, and G. Joshi, “Data-dependent
systems methodology for noise-insensitive phase un-
wrapping in laser interferometric surface characteriza-
tion,” Journal of the Optical Society of America, vol.
11, no. 10, pp. 2584–2592, 1994.

[5] A. Devaney, “Diffraction tomographic reconstruction
from intensity data,”IEEE Transactions on Image Pro-
cessing, vol. 1, pp. 221–228, April 1992.

[6] A. Rauscher, M. Barth, J. Reichenbach, R. Stollberger,
and E. Moser, “Automated unwrapping of mr phase im-
ages applied to bold mr-venography at 3 tesla,”Journal
of Magnetic Resonance Imaging, vol. 18, no. 2, pp. 175–
180, 2003.



Fig. 2. (a) Wrapped Gaussian elevation (50π rad); the image
was obtained with a relative frequency of1 and SNR= 10 dB.
(b) Wrapped Gaussian elevation (50π rad); the image was ob-
tained with a relative frequency of4/5 and SNR= 10 dB. (c)
Images in (a) and (b) unwrapped but limited to the ambigu-
ity interval (µ = 0.1); no aliasing. (d) Images in (a) and (b)
unwrapped by our proposed algorithm (µ = 0.1); perfect un-
wrapping even with noise.

[7] A. Manduca et al., “Magnetic resonance elastography:
Non-invasive mapping of tissue elasticity,”Medical Im-
age Analysis, vol. 5, no. 4, pp. 237–254, December
2001.

[8] Michael C. Roggemann and Byron M. Welsh,Imaging
Through Turbulence, CRC, 1996.

[9] K. Itoh, “Analysis of the phase unwrapping problem,”
Applied Optics, vol. 21, no. 14, 1982.

[10] K. Ireland and M. Rosen,A Classical Introduction to
Modern Number Theory, 2nd ed., Springer-Verlag.

[11] J. Dias and J. Leitão, “TheZπM algorithm for inter-
ferometric image reconstruction in SAR/SAS,”IEEE
Transactions on Image Processing, vol. 11, pp. 408–
422, April 2002.

[12] W. Xu, E. Chang, L. Kwoh, H. Lim, and W. Heng,
“Phase-unwrapping of sar interferogram with multi-
frequency or multi-baseline,” inProceedings of the
1994 International Geoscience and Remote Sensing
Symposium-IGARSS’94, 1994, vol. 2, pp. 730–732.

[13] M. Vinogradov and I. Elizavetin, “Phase unwrap-
ping method for the multifrequency and multibaseline
interferometry,” in Proceedings of the 1998 Inter-
national Geoscience and Remote Sensing Symposium-
IGARSS’98, Seattle, WA, USA, 1998, vol. 2, pp. 1103–
1105.

[14] V. Pascazio and G. Schirinzi, “Multifrequency insar
height reconstruction through maximum likelihood esti-
mation of local planes parameters,”IEEE Transactions
on Image Processing, vol. 11, pp. 1478–1489, Decem-
ber 2002.

[15] D. Ghiglia and M. Pritt, Two-Dimensional Phase Un-
wrapping. Theory, Algorithms, and Software, John Wi-
ley & Sons, New York, 1998.

[16] H. Ishikawa, “Exact optimization for Markov random
fields with convex priors,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 25, no. 10,
pp. 1333–1336, October 2003.

[17] Boris Zalesky, “Efficient determination of gibbs estima-
tors with submodular energy functions,” 2003.

[18] J. Darbon and M. Sigelle, “Image restoration with dis-
crete constrained total variation part ii: Levelable func-
tions, convex priors and non-convex cases fast and exact
optimization,” Journal of Mathematical Imaging and
Vision, pp. 277–291, 2006.

[19] J. Huntley and H. Saldner, “Temporal phase-
unwrapping algorithm for automated interferogram
analysis,”Applied Optics, vol. 32, pp. 3047–3052, 1993.


