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ABSTRACT

Dimensionality reduction plays a crucial role in many hyperspectral data processing and analysis algorithms.
This paper proposes a new mean squared error based approach to determine the signal subspace in hyperspectral
imagery. The method first estimates the signal and noise correlations matrices, then it selects the subset of
eigenvalues that best represents the signal subspace in the least square sense. The effectiveness of the proposed
method is illustrated using simulated and real hyperspectral images.
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1. INTRODUCTION

Hyperspectral remote sensing exploits the fact that all substances scatter electromagnetic energy, at specific
wavelengths, in distinctive patterns related to their molecular composition.1 Hyperspectral sensors use many
contiguous bands of high spectral resolution covering the visible, near-infrared, and shortwave infrared spectral
bands (0.3−2.5µm).2 Very often, the resolution cell corresponding to a single pixel in an image contains several
substances. In this situation, the scattered energy is a mixing of the endmember spectra.3

Each pixel of an hyperspectral image can be represented as a vector in the space <L, where L is the number
of bands. Under the linear mixing scenario, the spectral vectors are a linear combination of a few vectors, the
so-called endmember signatures. Therefore, the dimensionality of data (number of endmembers) is usually much
lower than the number of bands.

A key problem in dimensionality reduction in hyperspectral imagery is the determination of the number of
endmembers, termed intrinsic dimension (ID) of the data set. The estimation of the ID allows a correct dimension
reduction and thus gains in computational time and complexity. Moreover, the projection of spectral vectors
onto a subspace of lower dimension improves the signal-to-noise ratio (SNR).

There are basically two approaches for estimating ID5: global and local. The first estimates ID of data set as
a whole. The second estimates ID using information contained in sample neighborhoods. The latter approach
avoids the projection of data onto a lower-dimensional space. Projection techniques, which are generally used as
global approaches, seek for the best subspace to project data by minimizing an objective function. For example
principal component analysis (PCA)6 seeks the projection that best represents data in the least square sense;
maximum noise fraction (MNF)7 or noise adjusted principal components (NAPC)8 seeks the projection that
optimizes the ratio of noise power to signal power. This is in contrast with PCA where no noise model is used.
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Topological methods are local approaches that estimate the topological dimension of a data set.9 For example
curvilinear component analysis (CCA)10 and curvilinear distance analysis (CDA)11 are non-linear projections
that are based on the preservation of the local topology.

Recently Harsanyi, Farrand, and Chang developed a Neyman-Pearson detector, referred to as HFC, to de-
termine the number of spectral endmembers in hyperspectral data (see12).

This paper proposes a new method to estimate the number of endmembers and the signal subspace in
hyperspectral linear mixtures. The method begins by estimating signal and noise correlation matrices. The
latter is obtained based on multiple regression theory. The signal subspace is then identified by selecting the set
of signal eigenvalues that best represents, in the least square sense,13 the mean value of data set.

The paper is structured as follows. Section 2 describes the fundamentals of the proposed method. Section
3 evaluate the proposed algorithm using simulated and real data. Section 4 ends the paper by presenting some
concluding remarks.

2. SUBSPACE ESTIMATION

Let Y =
[
Y1,Y2 . . .YN

]
be a L×N matrix of spectral vectors, one per pixel, where N is the number of pixels

and L the number of bands. Assuming a linear mixing scenario, each observed spectral vector is given by

y = x + n

= Ms + n, (1)

where y is an L-vector, M ≡ [m1,m2, . . . ,mp] is the mixing matrix (mi denotes the ith endmember signature
and p is the number of endmembers present in the covered area), s = [s1, s2, . . . , sp]T is the abundance vector
containing the fractions of each endmember (the notation (·)T stands for vector transposed) and n models system
additive noise.

Owing to physical constraints,14 abundance fractions are non-negative (s º 0) and satisfy the so-called
positivity constraint 1T s = 1, where 1 is a p× 1 vector of ones.

The correlation matrix of vector y is Ry = Rx + Rn, where Rx = MRsMT is the signal correlation matrix,
Rn is the noise correlation matrix, and Rs is the abundance correlation matrix. An estimate of the signal
correlation matrix is given by

R̂x = R̂y − R̂n, (2)

where R̂y = YYT /N is the sample correlation matrix of Y, and R̂n is an estimate of noise correlation matrix.

Define Yi = [Yi1, . . . , YiN ]T , i.e, Yi is the transpose of the ith line of matrix Y, thus containing the
data read by the hyperspectral sensor at the ith band for all image pixels. Define also the matrix Y∂i =
[Y1, . . . ,Yi−1,Yi+1, . . . ,YL].

Assuming that the dimension of the signal subspace is much lower than the number of bands, then the noise
correlation matrix R̂n can be inferred based on multiple regression theory.15 This consists in assuming that

Yi = Y∂iβi + εi, (3)

where Y∂i is the explanatory data matrix, βi = [β1, . . . , βL−1]T is the regression vector, and εi are modeling
errors. For each i ∈ {1, . . . , L}, the regression vector is given by βi = [Y∂i ]#Yi, where (·)# denotes pseudo-
inverse matrix. Finally, we compute ε̂i = Yi −Y∂i β̂i and its sample correlation matrix R̂n.

Figure 1 left shows simulated reflectance x and reflectance plus noise x + n for a given pixel. Figure 1 right,
presents true and estimated noise for the same pixel. Notice the similarity.



Figure 1. Left: Illustration of the noise estimation; Bold line: Reflectance of a pixel; Narrow line: Noise corrupted

reflectance; Right: solid line: true noise; dashed line: estimated noise.

Let the singular value decomposition (SVD) of R̂x be,

R̂x = EΣET , (4)

where E = [e1, . . . , ek, ek+1 . . . , eL] is a matrix with the singular vectors ordered by the descendent magnitude
of the respective singular values. The space <L can be splitted into two orthogonal subspaces: < Ek > spanned
by Ek = [e1, . . . , ek] and < E⊥

k > spanned by E⊥k = [ek+1, . . . , eL], where k is the order of the signal subspace.

Since hyperspectral mixtures have nonnegative components, the projection of the mean value of Y onto any
eigenvector ei, 1 ≤ i ≤ k, is always nonzero. Therefore, the signal subspace can be identified by finding the
subset of eigenvalues that best represents, in the least square sense, the mean value of data set.

The sample mean value of Y is

y =
1
N

N∑

i=1

Yi

=
1
N

M
N∑

i=1

si +
1
N

N∑

i=1

ni

= c + w, (5)

where c is in the signal subspace and w ∼ N (0,Rn/N) [the notation N (µ,C) stands for normal density function
with mean µ and covariance C]. Let ck be the projection of c onto < Ek >. The estimation of ck can be
obtained by projecting y onto the signal subspace < Ek >, i.e., ĉk = Pky, where Pk = EkET

k is the projection
matrix onto < Ek >.

The first and second order moments of the estimated error c− ĉk are

E
[
c− ĉk

]
= c− E

[
ĉk

]

= c− E
[
Pky

]

= c−Pkc

= c− ck

≡ bk, (6)
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Figure 2. Mean squared error versus k, with SNR = 35 dB, p = 5; (first experiment)

E
[
(c− ĉk)(c− ĉk)T

]
= bkbT

k + PkRnPT
k /N, (7)

where the bias bk = P⊥k c is the projection of c onto the space < E⊥
k >. Therefore the density of the estimated

error c− ĉk is N (bk,bT
k bk + PkRnPT

k /N),

The mean squared error between c and ĉk is

mse(k) = E
[
(c− ĉk)T (c− ĉk)

]

= tr{E[
(c− ĉk)(c− ĉk)T

]}
= bT

k bk + tr(PkRnPT
k /N), (8)

where tr(·) denote the trace operator. Since we do not know the bias bk, an approximation of Eq. (8) can be
achieved by using the bias estimate b̂k = P⊥k y. However, E

[
b̂k

]
= bk and E

[
b̂T

k b̂k

]
= bT

k bk+tr(P⊥k RnP⊥k
T
/N),

i.e., an unbiased estimate of bT
k bk is b̂T

k b̂k − tr(P⊥k RnP⊥k
T
/N). The criteria for the signal subspace order

determination is then

k̂ = arg min
k

(
b̂T

k b̂k + tr(PkRnPT
k /N)− tr(P⊥k RnP⊥k

T
/N)

)

= arg min
k

(
yT P⊥k

T
P⊥k y + 2tr(PkRn/N)− tr(Rn/N)

)

= arg min
k

(
yT P⊥k y + 2tr(PkRn/N)

)
, (9)

where we have used P = PT and P2 = P for any projection matrix.

Each term of (9) have a clear meaning: the first accounts for projection error power and it is a decreasing
function of k; the second accounts for noise power and it is an increasing function of k.

3. EXPERIMENTS

3.1. Computer Simulations

In this section we test the proposed method in simulated scenes. The spectral signatures are selected from the
U.S. geological survey (USGS) digital spectral library.16 Abundance fractions are generated according to a
Dirichlet distribution given by

p(α1, α2, . . . , αp) =
Γ(µ1 + µ2 + . . . + µp)
Γ(µ1)Γ(µ2) . . . Γ(µp)

αµ1−1
1 αµ2−1

2 . . . αµp−1
p , (10)



Table 1. Signal subspace dimension bk as function of SNR and of p; Bold: Proposed method; In brackets: VD estimation

with NWHFC method and Pf = 10−4.

Signal subspace dimension k̂

Method New (VD) New (VD) New (VD) New (VD) New (VD)

SNR (in dB) 50 35 25 15 5

p = 3 3 (3) 3 (3) 3 (4) 3 (4) 3 (2)
p = 5 5 (6) 5 (6) 5 (6) 5 (6) 4 (3)
p = 10 10 (11) 10 (11) 10 (9) 8 (8) 6 (2)
p = 15 15 (16) 15 (15) 13 (13) 9 (9) 5 (2)

where 0 ≤ αi ≤ 1,
∑p

i=1 αi = 1, and Γ(·) denotes the Gamma function. The mean value of the ith endmember
fraction αi is E[αi] = µi/

∑p
k=1 µk.

The results next presented are organized into two experiments: in the first experiment the method is evaluated
with respect to the SNR and to the number of endmembers p. We define SNR as

SNR ≡ 10 log10

E
[
xT x

]

E
[
nT n

] . (11)

In the second experiment, the method is evaluated when a subset of the endmembers are present only in a few
pixels of the scene.

In the first experiment, the hyperspectral scene has 104 pixels and the numbers of endmembers varies from
3 to 15. The abundance fractions are Dirichlet distributed with mean value µi = 1/p, for i = 1, . . . , p.

Fig. 2 left shows the evolution of the mean squared error, i.e., of yT P⊥k y + 2tr(PkRn/N) as a function of
the parameter k, for SNR = 35 dB and p = 5. The minimum of the mean squared error occurs for k = 5, which
is exactly the number of endmembers present in the image.

Table 1 presents the signal subspace order estimate as function of the SNR and of p. In this table we compare
the proposed method and the virtual dimensionality (VD), recently proposed in.12 The VD was estimated by
the NWHFC based eigen-thresholding method using the Neyman-Pearson test with the false-alarm probability
set to Pf = 10−4. The proposed method finds the correct ID for SNR larger than 25 dB, and underestimates ID
as the SNR decreases. In comparison with the NWHFC algorithm, the proposed approach yields systematically
equal or better results.

In the second experiment SNR = 35 dB and p = 8. The first five endmembers have a Dirichlet distribution
as in the previous experiment and the other three are forced to appear only in 4 pixels each one. Fig. 3 shows
the mean squared error versus k, when p = 8. The minimum of mse(k) is achieved with k = 8. This means that
the method is able to detect rare endmembers in the image. However, this ability degrades as SNR decreases,
as expected.

3.2. Cuprite Experiments

In this section, we apply the proposed method to real hyperspectral data collected by the AVIRIS17 sensor over
Cuprite, Nevada. Cuprite is a mining area in southern Nevada with mineral and little vegetation.18 Cuprite test
site, located approximately 200 Km northwest of Las Vegas is a relatively undisturbed acid-sulfate hidrothermal
system near highway 95. The geology and alteration were previously mapped in detail.19, 20 A geologic summary
and a mineral map can be found in.18 This site has been extensively used for remote sensing experiments over
the past years.21, 22 This study is based on subimage ( 250× 190 pixels and 224 bands) of a data set acquired
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Figure 3. Mean squared error versus k, with SNR = 35dB, p = 8 (3 spectral vectors occur only on 4 pixels each; (second

experiment)
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Figure 4. Left: Band 30 (wavelength λ = 667.3nm) of the subimage of AVIRIS cuprite Nevada data set; Right: percentage

of energy in the subspace E9:23.



Figure 5. Left: Percentage of signal energy as function of the number of eigenvalues; Right: mean squared error versus

k for cuprite data set.

on the AVIRIS flight 19 June 1997 (see Fig. 4 left). AVIRIS instrument covers the spectral region from 0.41µm

to 2.45µm in 224 bands with 10nm bands. Flying at an altitude of 20km, it has an instantaneous field of view
(IFOV) of 20m and views a swath over 10km wide.

The proposed method when applied to this data set estimates k̂ = 23 (see Fig. 5 right). According to the
truth data presented in,18 there are 8 materials in these area. This difference is due to a) the presence of rare
pixels not accounted for in the truth data18 and b) spectral variability.

The bulk of spectral energy is explained with only a few eigenvectors. This can be observed from Fig. 5 left,
where the accumulated signal energy is plotted as function of the eigenvalue index. The energy contained in the
first 8 eigenvalues is 99.94% of the total signal energy. This is further confirmed in Fig. 4, right, where we show,
in gray level and for each pixel, the percentage of energy contained in the subspace < E9:23 >=< [e9, . . . , e23] >.
Notice that only a few (rare) pixels contain energy in < E9:23 >. Furthermore, these energies are a very small
percentage of the correspondent spectral vector energies (less than 0.16%) in this subspace.

The VD estimated by the HFC based eigen-thresholding method12 (Pf = 10−3) on the same data set yields
k̂ = 20. A lower value of Pf would lead to a lower number of endmembers. This result seems to indicate that
the proposed method performs better than the HFC with respect to rare materials.

4. CONCLUSIONS

The determination of the signal subspace dimensionality is a difficult and challenging task. In this paper, we
have proposed a method to estimate the dimensionality of hyperspectral linear mixtures. The method is based
on the mean squared error criteria.

A set of experiments with simulated and real data leads to the conclusion that the method is an useful tool
in hyperspectral data analysis, yielding comparable or better results than the state-of-the-art methods.
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