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ABSTRACT

The very high spectral resolution of Hyperspectral Images (HSIs) enables the identification of materials with
subtle differences and the extraction subpixel information. However, the increasing of spectral resolution often
implies an increasing in the noise linked with the image formation process. This degradation mechanism limits
the quality of extracted information and its potential applications. Since HSIs represent natural scenes and
their spectral channels are highly correlated, they are characterized by a high level of self-similarity and are well
approximated by low-rank representations. These characteristic underlies the state-of-the-art in HSI denoising.
However, in presence of rare pixels, the denoising performance of those methods is not optimal and, in addition,
it may compromise the future detection of those pixels. To address these hurdles, we introduce RhyDe (Robust
hyperspectral Denoising), a powerful HST denoiser, which implements explicit low-rank representation, promotes
self-similarity, and, by using a form of collaborative sparsity, preserves rare pixels. The denoising and detection
effectiveness of the proposed robust HSI denoiser is illustrated using semi-real data.
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1. INTRODUCTION

Hyperspectral images (HSIs) have been widely used in countless applications, (e.g., earth observation, envi-
ronmental protection and natural disaster monitoring), since they have high spectral resolution (hundreds or
thousands of spectral channels), which enables material identification with precision via spectroscopic analysis.
However, the measurement noise often precludes the widespread use of HSIs in precise material identification
(e.g., precision farming) applications.

Among the recent developments, low-rank and self-similarity based image denoising holds the state-of-the-
art in HSI denoising (e.g., NAILRMA [1] and FastHyDe [2]). However, the presence of rare pixels, which are
anomalies whose spectral-spatial characteristics are different from majority of pixels (often called background),
degrades the denoising performance and may preclude the future detection of those pixels.

The detection of rare pixels, often termed the anomaly detection problem [3], has been object of considerable
researcah efforts, part of then devoted to develop accurate models for the background. Representative models
for the background are Gaussian densities [4, 5], mixtures of Gaussian densities [6], and (sparse) linear mixing
models [7, 8]. The main objective in anomaly detection it to classify a pixel either as background or as anomaly,
if it does not fit the background model. Given the usual complexity of the landcover in remote sensing, that
classification problem is often quite hard.
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1.1 Contribution

This work aims at endowing our previous FastHyDe denoiser [2] with the ability to preserve rare pixels. It takes
full advantage of the structured sparsity linked with the usual highly sparse distribution of rare pixels in the HSI
spatial domain. In addition, we also introduce an anomaly detection method, which is a spin-off of the denoiser
algorithm and it is competitive with the state-of-the-art anomaly detection methods.

We name the proposed denoising and anomaly detection framework Robust hyperspectral Denoising (RhyDe).

2. PROBLEM FORMULATION
2.1 Observation Model

Assume that the dataset contains a small number of spectral/spatial outliers in unknown positions. The outliers
are usually rare pixels or pixel corruptions due to malfunction of the sensor. In a way similar to robust PCA [9]
and to the formulations [1, 2], we adopt the observation model

Y=X+S+N, (1)

which assumes that the observed data matrix Y € R™ ™ with n, rows (spectral bands) and n columns (spatial
pixels) is the sum of matrix X, representing the signal component, with matrix S, representing the rare pixels,
and N, representing the noise and modeling errors. Given Y, our objective is the estimation of X and S, by
exploiting the fact that X is low-rank and self-similar and S is columnwise sparse. This reasoning has connections
with that of robust PCA [9]. There are, however, considerable differences: regarding X, we explicitly enforce low-
rank and promote self-similarity via suitable patch-based regularization, whereas robust PCA promotes low-rank
via nuclear norm regularization and does not use spatial regularization; regarding S, we promote colummnwise
sparsity via /3 ; regularization, whereas robust PCA promotes sparsity of any element of S via ¢; regularization.

An usual assumption in HSIs is that the columns (spectral vectors) of matrix X live in a low-dimensional
subspace that may be estimated from the observed data Y with good approximation [2, 10]. Thus, we write
X = EZ [2], with E € R™*? and p < np, and E holding an orthogonal basis for the signal subspace. Hence, the
observation model (1) may be written as

Y=EZ+S+N. (2)

As stated above, three characteristics of HSIs are exploited in this paper: a) they are well approximated by
low dimensional subspaces, b) their images of subspace representation coefficients, herein termed eigen-images,
are self-similar and thus suitable to be denoised with non-local patch-based methods, such as the BM3D [11] or
LRCF [12], and c) anomalies are often spatially sparse.

2.2 Denoising

Based on the above rationale, we propose to estimate the matrix Z and the sparse matrix S representing outliers
by solving the optimization

PO 1
2.8} € argin S|[BZ+8 = Y%+ 210(2) + 2187 .1 3)

where || X||2% = trace(XX7) is the Frobenius norm of X. The first term on the right-hand side represents the data
fidelity. The second term is the first regularizer expressing prior information tailored to self-similar images [2, 11—
13], and the third term is the second regularizer, the mixed 21 norm of S given by [|ST |21 = >, lIsill2 (s
denotes i-th column of S), which promotes column-wise sparsity among the columns of S (see, e.g. [14]). Finally,
A1, A2 > 0 are regularization parameters, setting the relative weight of the respective regularizers. Assuming
that ¢ is a convex function, then the optimization (3) is a convex problem.

Let A = [ZTST]T be a (p + np) x n matrix gathering the (p x n) eigen-images Z and the (n, x n) outlier
matrix S. Problem (3) can be written as

- 1
A € argmin o [[Y = [B, L, JA[7 + M6 ([T, Opxn,)|A)

+ A2 [ ([0, xp)s Tng JA) T 12,1, (4)



where I, denotes an identity matrix of size a and 04y is zero matrix of size a x b.

We solve the optimization (4) with CSALSA algorithm [15], which is an instance of ADMM [16] conceived
to solve convex optimizations with an arbitrary number of terms. CSALSA starts by converting the original
optimization into a constrained one, using variable splitting, as follows:

A SIY = VA M0(Va) el VE [ (5)
st. Vi =[EL,]A

Vi = [, 0(pxn,) | A

V3 = [0, xp), In, ]A.

The augmented Lagrangian function of above optimization is

L(AV{,V5, V3. D, Dy, D3) =
Y = V|2 + Mo(Va) + Ao [ VE 21
+%HV1 - [E7ITLb]A_D1H%' (6)
+%H‘h - [Ip,O(pxnb)]A - DQH%
+%HV3 - [O(TLbXP)vInb]A - D3||%’7

where (1, po, u3 > 0 are the CSALSA penalty parameters.
The application of CSALSA to (6) leads to Algorithm 1. The optimizations of lines 3 and 4 are quadratic

Algorithm 1 Robust hyperspectral Denoising (RhyDe)

1: Set k =0, choose pi1, pt2, 43 > 0, Vi, Voo, D19, Dag.

2: repeat

3 Ay = argming G| Vig — [BL,JA - Digli + B Var — [, 0pxn,)JA — Dagli + 5[ Vap —
[O(TLb Xp)» Inb]A D3J€||F
Vig1 = argminy, 5[|Y = Vi[|7 + 5Vi — [E, L, ]JAr 1 — Digll%
V2,/€+1 = argminv2,k+1 /\1¢(V2) + L;HVQ - [IP7 O(PXﬂb)]A/H-l - D2,7€||%
Vg1 = argminv, , , A2l V3 |21 + 52 Vs = [0, xp)s InyJAk1 — DailE
Dijt1 =Dip— (Vigs1r — [E I, ] A1)
Doii1 =Dor — (Vo1 — Ip, Opxcn,) | Aks1)
D31 =Dsx — (Vars1 — [0, xp)s Iny | Ak11)
10: k—k+1
11: until stopping criterion is satisfied.

problems, whose solutions are given by

Line 3:
Api1 = (,Ul [E, In,, (E,L,] + N2[Ip>0pxnb] N
[ pxnb] + U3[O(nb><p)vInb}H[O(nth%Im]) (7)
(11 [B, T ] (V1 — D3) + fia [Ty, Op g )
(V2 = Da) + 113[0(, xp)> L, " (Vs — D3)),
Line 4:
Vigrr =1+ ) ' [Y + (B, L, ]Ari1 + D)l (8)

Lines 5 and 6: these optimizations are the proximity operators (POs) of ¢ applied to V’27,C = L, 0(pxny) | Akg1 +
Ds i, and of the ¢ ; norm applied to Vé,k = [0(n, xp)> In,JAks1 + D3 i, respectively. That is

Vot = Yao/u (Vi) (9)

where 1
Vie(U) = arg1r§11§\\X—UII%+/\¢(X), (10)



and

Vst = Ul lz /s (Vai1); (11)
where, given U = [uy,...,u,],
o1
WA o.1 (U) = argmin o [|X = U[% + AIXT |2, (12)
=[soft-vector(u;, \/us), i =1,...,n], (13)

and soft-vector(x, 7) is the vector-soft-threshold [17]

max(||x|| — 7,0)

max(||x|]| —7,0) + T

Actually, Vé,k and V’2’ , can be regarded, respectively, as an estimate of noisy outlier image, which only con-
tains the information about outliers, and an estimate of noisy eigen-images, respectively, in the k-th iteration.
Functions Wy, 4/, (V5 ;) and Wy, .., /us (V3,,,) Play the role of denoisers of the respective noisy images.

~

Here we use the plug-and-play approach in solving the subproblem w.r.t. Z [18]. By assuming that ¢
is decoupled w.r.t. to the bands of Z, and noting that E is orthogonal, then the plug-and-play step w.r.t.
Z amounts to apply an available denoiser, such as the BM3D [11] or LRCF [12], to each band of Z. Since
those denoisers are not POs, we do not have converge guarantee for the implemented variant of CSALSA. The
convergence of the plug-and-play iterative procedures is currently an active area of research [18]. In our case, we
have systematically observed converge of RhyDe with the augmented Lagrangian parameters set to u; = 1, for
i=1,2,3.

2.3 Anomaly detection

We propose an anomaly detector derived from the estimate of outlier matrix S in (3), i.e.,
ri = |8ill2, i=1,...,n, (14)

where §; is the i-th column of outlier matrix S. If r; is larger than a threshold, then the i-th pixel is classified
as an anomalous pixel.

3. EXPERIMENTAL RESULTS
3.1 Dataset

A semi-real hyperspectral dataset (Fig.1-b) was simulated by adding Gaussian noise and anomaly pixels in Pavia
University data® as follows: To simulate a clean image, 28 very low signal-to-noise bands were removed. The
remaining spectral vectors are then projected onto the signal subspace learned via singular value decomposition
(SVD). The projection largely removes the noise. Fig.1-a shows a false color image produced with three bands
taken from the clean image.

In order to simulate outliers, we replaced randomly selected 0.02% of the pixels (Fig.1-c¢) with the spectral
signature of the mineral Sillimanite HS186.3B available in the USGS spectral library. By doing this, a clean
image containing outliers was obtained. Finally, Gaussian independent with band-dependent variance noise was
added to simulated noisy images (Fig. 1-b): n; ~ N(0,D) where D is a diagonal matrix with diagonal elements
sampled from a Uniform distribution U (0, u) with « € {0.04,0.02,0.013,0.007,0.004}.

* Pavia scenes were provided by Prof. Paolo Gamba from the Telecommunications and Remote Sensing Laboratory,
Pavia university (Italy) and can be downloaded from http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_
Remote_Sensing_Scenes.
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(a) Clean image (b) Noisy band (c) Groundth of rare pixels (d) Denoised band by RhyDe

Figure 1. (a) Clean Pavia University scene, (b) A subset of simulated noisy image (Band 61, 20.31 dB) with 0.02% of
outliers, (¢) Groundtruth of outliers, and (d) A subset of denoised image by RhyDe(Band 61).

3.2 Denoising performance

The denoising performance of RhyDe is compared with those of BM4D [19], NAILRMA [1], and FastHyDe [2].
Since the simulated noise is band variant and all compared methods assume i.i.d noise, the observed data is
whitened before the denoisers are applied. For more details see [2].

For quantitative assessment, the signal-to-noise (SNR) index and the structural similarity (SSIM) index [2]
of each band are calculated. The corresponding mean SNR (MSNR) and mean SSIM (MSSIM) are reported in
Table 1, where we can see that the RhyDe yields uniformly the best performance. The quality of reconstructed
spectra may also be inferred from Fig. 2. The results indicate that the strategy in FastHyDe, i.e., combining the
prior knowledge self-similarity (also utilized in BM4D) and low-rank (also utilized in NAILRMA) works better
than that just using one of them. But the low-rank regularization (NAILRMA and FastHyDe) may lead to loss
of rare pixels. In contrast with this scenario, RhyDe is able to preserve anomaly pixels (Fig. 2-right) since it
represents rare pixels as a columnwise sparse matrix.

3.3 Anomaly detection performance

The proposed anomaly detector (14) is compared with the state-of-the-art, namely with the global RX [4], local
RX [4], OSP global RX [5], OSP local RX [5], NRS [7], and BSJSBD [8]. Receiver operating characteristic
(ROC) curve plotting the detection rate against false alarm rate is usually adopted to illustrate the performance
of a detector. Here we report the minimum false alarm rates when the detectors reach 100% detection rates in
Fig. 3. The detection based on RhyDe yields almost uniformly the best detection results.

4. CONCLUSION

We have proposed RhyDe, a new low-rank based denoising method with preservation of rare pixels. As an
extension of FastHyDe, the new method exploits the following characteristics of HSIs: low-rank and self-similarity
of clean HSIs, and structured sparsity of outlier matrix. A comparison with the state-of-the-art algorithms was
conducted, leading to the conclusion that RhyDe yields better performance for additive noise with preservation of
rare pixels. Compared with the state-of-the-art anomaly detector, the derived detector shows superior detection
performance.



Table 1. Quantitative assessment of different denoising algorithms applied to semi-real dataset.

Index Noisy Image BM4D NAILRMA FastHyDe RhyDe
MSNR (dB) 20.31 28.35 33.25 38.13 38.58
MSSIM 0.8295 0.9819 0.9949 0.9982 0.9983
Time (Seconds) - 893 480 25 213
MSNR (dB) 25.65 32.37 37.10 42.24 43.16
MSSIM 0.9303 0.9932 0.9973 0.9991 0.9992
Time (Seconds) - 881 573 25 214
MSNR (dB) 30.84 35.55 40.96 47.58 49.34
MSSIM 0.9697 0.9963 0.9988 0.9997  0.9997
Time (Seconds) - 884 711 25 218
MSNR (dB) 35.40 40.38 44.90 47.36 51.11
MSSIM 0.9910 0.9987 0.9995 0.9998 0.9999
Time (Seconds) - 884 718 26 220
MSNR (dB) 40.19 43.89 48.19 49.56 54.27
MSSIM 0.9964 0.9994 0.9998 0.9999  0.9999
Time (Seconds) - 886 675 26 222
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Figure 2. Denoised spectral signatures of a normal pixel (left) and denoised spectral signatures of a anomaly pixel (right)
in simulated noisy data (20.31 dB) with 0.02% of outliers. Note that the noise in anomaly pixel is not removed completely
by RhyDe since our main objective w.r.t. anomalies is to keep them rather than to denoise them and our output result
isZ+S.
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Figure 3. False alarm rate as a function of the relative power of the rare pixels that lies orthogonal complement of the
signal subspace, denoted ad ~y, for SNR = 20.31dB. As 7 decreases, the detection of the outliers becomes more difficult.
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