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ABSTRACT

Image segmentation is fundamentally a discrete problem. It consists of finding a partition of the image domain
such that the pixels in each element of the partition exhibit some kind of similarity. The solution is often obtained
by minimizing an objective function containing terms measuring the consistency of the candidate partition with
respect to the observed image, and regularization terms promoting solutions with desired properties. This
formulation ends up being an integer optimization problem that, apart from a few exceptions, is NP-hard and
thus impossible to solve exactly. This roadblock has stimulated active research aimed at computing “good”
approximations to the solutions of those integer optimization problems. Relevant lines of attack have focused on
the representation of the regions (i.e., the partition elements) in terms of functions, instead of subsets, and on
convex relaxations which can be solved in polynomial time.

In this paper, inspired by the “hidden Markov measure field” introduced by Marroquin et al. in 2003, we
sidestep the discrete nature of image segmentation by formulating the problem in the Bayesian framework and
introducing a hidden set of real-valued random fields determining the probability of a given partition. Armed
with this model, the original discrete optimization is converted into a convex program. To infer the hidden
fields, we introduce the Segmentation via the Constrained Split Augmented Lagrangian Shrinkage Algorithm
(SegSALSA). The effectiveness of the proposed methodology is illustrated with simulated and real hyperspectral
and medical images.

Keywords: Image segmentation, integer optimization, Markov random fields, hidden Markov measure fields,
hidden fields, alternating optimization, Constrained Split Augmented Lagrangian Shrinkage Algorithm (SALSA),
semi-supervised segmentation.

1. INTRODUCTION

Image segmentation plays a crucial role in many imaging and computer vision applications. Relevant examples
are biomedical imaging (e.g., quantification of tissue volumes, diagnosis, localization of pathology, study of
anatomical structure, treatment planning, partial volume correction of functional imaging data, and computer
integrated surgery1), remote sensing (e.g., elaboration of thematic maps in hyperspectral imaging2 and oil spill
detection3), and computer vision (e.g., stereo matching4 and photo and video editing5).

The image segmentation problem consists in finding a partition of the image domain such that the image
properties in a given partition element, expressed via image features or cues, are similar in some sense. Because
image segmentation is almost invariably an ill-posed inverse problem, some form of regularization (a prior in
Bayesian terms) is usually imposed on the solution with the objective of promoting solutions with desirable
characteristics.
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Thus, the features, the regularization, and the estimation criteria are main ingredients in image segmentation.
The design of informative image features is problem dependent. Classical examples include color (spectral)
vectors, morphological profiles, Gabor features, wavelet-based features, and combinations of local statistics. See
Randen et al.6 for a comparative study of relevant filtering approaches to texture feature extraction. The type of
regularization and the estimation criteria used to infer a partition are relates issues. In the Bayesian framework,
the segmentation is often obtained by computing the maximum a posteriori probability (MAP) estimate of the
partition, which maximizes the product of likelihood function (i.e., the probability of the observed image given
the partition) with the prior probability for the partition, usually a Markov Random Field7,8. In the variational
framework (e.g. active contours/snakes, geodesic active contours, level sets9,10), the image segmentation is
obtained by finding the partition boundaries that minimize the sum of data misfit terms (interpretable as the
negative likelihood in Bayesian terms) and regularization terms, such as length and area of the boundary. In the
graph-based methods11, the segmentation is obtained by formulating image segmentation as a graph partitioning
problem, where the regularization is implicit in the definition of the partition of the graph.

Images of integers are natural representations for partitions. With this representation, the MAP segmentation,
or the equivalent variational approach, is an integer optimization problem that, apart from a few exceptions,
is NP-hard and thus impossible to solved exactly. In the last decade, a large class of powerful integer mini-
mization methods based on graph cuts5,12–14 and based on convex relaxations15–17 has been proposed to solve
approximately MAP estimation problems of discrete MRFs.

In this paper, inspired by the “hidden Markov measure fields” introduced by Marroquin et al.18, we sidestep
the hurdles raised by the discrete nature of image segmentation by (a) formulating the problem in the Bayesian
framework and (b) introducing a hidden set of real-valued random fields conditioning the probability of a given
partition. Armed with this model, we compute the marginal MAP (MMAP) estimate of the hidden fields,
which is, under suitable conditions, a convex program. From the MMAP estimate of the hidden fields and the
conditional probability of the partition, we obtain a soft and a hard estimate of the partition.

In the hidden field model, the prior on the partition is indirectly expressed by the prior on the hidden fields. In
this paper, we use a form of vectorial total variation (VTV)19,20, which promotes piecewise smooth segmentations
and promotes sharp discontinuities between in the estimated partition.

1.1 Contributions

The main contributions of the paper are (a) the proposal of the VTV as prior on the hidden fields, (b) the proof
that the MMAP estimate of the partition is a convex program, and (c) the introduction of an instance of the
SALSA21 algorithm, which we term SegSALSA, to compute the exact MMAP estimate of the partition with
O(Kn lnn) complexity, where K is the cardinality of the partition and n the number of image pixels.

In this paper, we assume a supervised scenario in which the probability density functions of the feature vectors
conditioned to a given partition element, also termed class, are known or were learned from a training set. We
will provide, however, a qualitative discussion on the extension of the proposed methodology to unsupervised or
semi-supervised scenarios via expectation maximization (EM)22.

1.2 Related work

The work by Figueiredo23 also approaches the image segmentation problem following closely the “hidden Markov
measure fields” paradigm18. The main difference is in the statistical link and the prior on the hidden fields. The
former is based on the multinomial logistic model and the latter on wavelets. The main advantage of using the
multinomial logistic model is that it automatically enforces the nonnegativity and sum-to-one constraints linked
with the probability of the classes given the hidden fields. However, this is true only for the EM algorithm
proposed there and not for the supervised scenario considered here; we will discuss this in more detail in Section
2.4.

In Lellmann et al.24 a multi-class labeling is approximately solved using tools from convex optimization.
The approach therein proposed has links with ours in that it also uses a VTV regularizer and the optimization
imposes constraints similar to ours. However, the data terms are different: ours is derived in under the a Bayesian
framework whereas theirs is introduced heuristically. In addition, our optimization algorithm exploits the SALSA



splitting flexibility to avoid double loops as those shown in the Douglas-Rachford Splitting algorithm proposed
in Lellmann et al.24

Finally, we mention the work by Sun et al.25, which also uses non-isotropic TV as a regularizer and imposes
constraints similar to ours. However, as in Lellmann et al.24, the data term, introduced heuristically, measures
the quadratic error norm between the probability vector obtained with sparse multinimial logistic regression and
the optimization variables. The optimization problem is convex and solved in via ADMM.

The paper is organized as follows. Section 2 formulates the problem, introduces the hidden fields, the MMAP of
the hidden fields, the statistical link between the class labels and the hidden fields, and the VTV prior. Section
3 presents the SegSALSA algorithm, which is an instantiation of SALSA to the problem in hand. Section 4
presents a number of experimental results with simulated and real hyperspectral and medical images. Finally,
Section 5 present as few concluding remarks and pointers to future work.

2. PROBLEM FORMULATION

To formulate the segmentation problem in mathematical terms, we start by introducing notation. Let S ≡
{1, · · · , n} denote a set of integers indexing the n pixels of an image and x ≡ [x1, · · · ,xn] ∈ Rd×n a d×n matrix
holding the d-dimensional image feature vectors. Given x, the goal of image segmentation is to find a partition
P ≡ {R1, . . . , RK} of S such that the feature vectors with indices in a given set Ri, for i = 1, . . . ,K, be similar
in some sense∗. Associated with a partition P , we introduce the image of class labels, also termed segmentation,
y ≡ (y1, · · · , yn) ∈ Ln, where L ≡ {1, . . . ,K} , such that yi = k if and only if i ∈ Rk. We remark that there is a
one-to-one correspondence between partitions and segmentations.

2.1 Maximum a posteriori probability segmentation

We adopt a Bayesian perspective to the image segmentation problem. Under this perspective, the MAP segmen-
tation is given by

ŷMAP = arg max
y∈Ln

p(y|x) (1)

= arg max
y∈Ln

p(x|y)p(y),

where p(y|x) is the posterior probability† of y given x, p(x|y) is the observation model, and p(y) is the prior
probability for the labeling y.

An usual assumption in many low-level image problems is that of conditional independence26, that is,

p(x|y) =

n∏
i=1

p(xi|yi)

=

K∏
k=1

∏
i∈Rk

pk(xi), (2)

where pk(xi) = p(xi|yi = k). For now, we assume that the class densities pk, for k ∈ L are known or learned
from a training set in a supervised fashion. Later, we discuss the semi-supervised scenario in which the class
densities depend on parameters to be learned from a small training set and a large unlabeled set.

Using the Bayes law, we may write p(xi|yi) = p(yi|xi)p(xi)/(p(yi)). Assuming that the a priori class proba-
bilities p(yi), for yi ∈ L, are known, we conclude therefore that the class densities p(xi|yi) in (2) may be replaced
with the discriminative probability model p(yi|xi) normalized by the respective a priori class probabilities p(yi).

∗We recall that a partition of a set S is a collection of sets Ri ⊂ S, for i = 1, . . . ,K, where ∪i=1Ri = S and
Ri ∩Rj = ∅, i 6= j.
†To keep the notation light, we denote both probability densities and probability distributions with p(·). Furthermore,

the random variable to which p(·) refers is to be understood from the context.



The relevance of this replacement is linked with the fact that the discriminative models are usually less complex
and yield, in the case small size training sets, better performance than the corresponding generative ones27.

Various forms of Markov random fields (MRFs) have been widely used as prior probability for the class labels
y. A paradigmatic example is the multilevel logistic/Potts model (MLL)7, which corresponds to the Ising model
in the case of two classes. These models promote piecewise smooth segmentations, i.e., segmentations in which
it is more likely to have neighboring labels of the same class than the other way around.

The minimization in (1) is an integer optimization problem. In the case of MLL priors, the exact solution
for K = 2 was introduced by mapping the problem into the computation of a min-cut on a suitable graph.28

However, for K > 2, the computation of ŷMAP in (1) is NP-hard and, therefore, impossible to solve exactly.
Various algorithms to approximate ŷMAP have been introduced in the last decade of which we highlight the graph
cuts based α-expansion12, the sequential tree-reweighted message passing (TRW-S)29, and the max-product loopy
belief propagation (LBP)30, and convex relaxations15–17. See Szeliski et al.31 for an extensive comparison of these
methods.

2.2 Hidden fields

The MAP formulation to image segmentation in terms of the image of class labels y raises a series of difficulties
regarding (a) the high computational complexity involved in computing the solution of the integer optimization
problem (1), (b) the selection of prior p(y), which is often constrained to the availability of an effective mini-
mization algorithm, and (c) the learning of unknown parameters θ parameterizing the model p(x,y,θ), owing
to the complexity usually involved in computing statistics with respect to y.

These roadblocks have stimulated research on several fronts. A powerful approach, introduced in Marroquin et
al.18 reformulates the original segmentation problem in terms of real-valued hidden fields conditioning the random
field y and endowed with a Gaussian MRF prior promoting smooth fields. The segmentation is obtained by
computing the marginal MAP (MMAP) estimate of the hidden fields, which corresponds to a soft segmentation.
The distinctive features of this approach are that it converts a hard integer optimization problem into a smooth
and, under suitable conditions, constrained convex problem, thus much simpler to solve exactly using convex
optimization tools.

2.3 Marginal MAP estimate of the hidden fields

To formulate the hidden field concept, and following closely Marroquin et al.,18 let z = [z1, . . . , zn] ∈ RK×n
denote a K × n matrix holding a collection of hidden random vectors, zi ∈ RK , for i ∈ S (one per pixel), and
define the joint probability

p(y, z) = p(y|z)p(z),

with

p(y|z) =

n∏
i=1

p(yi|zi).

With these definitions in place, the joint probability of (x,y, z) is given by

p(x,y, z) = p(x|y)p(y|z)p(z) (3)

from which we may write the marginal density with respect to (x, z) as

p(x, z) =

n∏
i=1

∑
yi∈L

p(xi|yi)p(yi|zi)

 p(z). (4)



The MMAP estimate of the of the hidden field z is then given by

ẑMMAP = arg max
z∈RK×n

p(x, z) (5)

= arg max
z∈RK×n

n∏
i=1

∑
yi∈L

p(xi|yi)p(yi|zi)

 p(z).

From ẑMMAP , we obtain the soft segmentation p(y|ẑMMAP ). A hard segmentation may be then obtained by
computing

ŷ = arg max
y∈Ln

p(y|ẑMMAP ).

2.4 The statistical link between the class labels and the hidden fields

The conditional probabilities p(yi|zi), for i ∈ S, play a central role in our approach. As in Marroquin et al.18 ,
we adopt the following model

p(yi = k|zi) ≡ [zi]k i ∈ S, k ∈ L, (6)

where the [a]k stands for the k-th element of vector a. Given that [zi]k, for k ∈ L, represents a probability
distribution, then the hidden vectors zi, for i ∈ S, shall satisfy the nonnegativity constraint zi ≥ 0, where the
inequality is to be understood componentwise, and the sum-to-one constraint 1TKzi = 1, where 1K stands for a
column vectors of size K containing only ones.

As explained in Section 3, the negative loglikelihood of the terms inside brackets in (6) are convex. This
is of paramount importance, for it implies that the optimization (5) may be converted into a convex program,
provided that the negative likelihood of the prior is also convex. To add even more interest to model (4) endowed
with the statistic link (6), it also leads to convex terms in a semi-supervised scenario where the model parameters
are learned via a suitable expectation maximization algorithm (EM), as explained in Section (2.6).

At this stage, we make reference to the work by Figueiredo23 that has also approached the image segmentation
problem following closely Marroquin et al.18 The main difference concerns the statistical link and the class the
prior. The former is based in the multinomial logistic model and the latter on wavelets. According to Figueiredo23

, the main advantage of using the multinomial logistic model is that it automatically enforces the nonnegativity
and sum-to-one constraints. However, this is true only for the EM algorithm proposed there and not for the
supervised scenario where the terms inside brackets in (6) are nonconvex for the multinomial logistic model.

2.5 The prior

In this paper, we adopt form of vector total variation (VTV)19,20 regularizer defined as

− ln p(z) ≡ λTV
∑
n∈S

√∥∥Dhz[n]
∥∥2 +

∥∥Dvz[n]
∥∥2 + cte, (7)

where and λTV > 0 is a regularization parameter controlling the strength of the prior, ‖ · ‖ is the standard
Euclidean norm, and Dh,Dv : RK×n 7→ RK×n are linear operators computing horizontal and vertical first order
backward differences, respectively; that is

Dhz[n] ≡ zn − zh(n)

Dvz[n] ≡ zn − zv(n)

where h(n) and v(n) denote, respectively, horizontal and vertical backward neighbors of pixel n. Here, we assume
cyclic boundaries.

The regularizer (7) has a number of desirable properties: (a) it promotes piecewise smooth hidden fields;
(b) as any total variation regularizer, it tends to preserve discontinuities and, owing to the coupling among the

classes introduced by the terms

√∥∥Dhz[n]
∥∥2 +

∥∥Dvz[n]
∥∥2, it tends to align the discontinuities among classes;

(c) it is convex, although not strictly, and amenable to optimization via proximal methods relying on Moreau
proximity operators32.



2.6 Semi-supervised segmentation

As we have already referred to, we assume in this paper a supervised scenario in which the class densities
p(xi|yi = k), for k ∈ L, are known or were learned from a training set. In an unsupervised or semi-supervised
scenario, those densities are often of the form p(xi|yi = k,θk), where θk, for k ∈ S, are unknown vector
parameters to be learned. We provide a brief discussion on the extension of the proposed methodology to
unsupervised or semi-supervised scenarios.

The MMAP estimate of the couple (z,θ), where θ ≡ (θ1 . . . ,θK), is given by

(ẑ, θ̂)MMAP = arg max
z,θ

p(x, z,θ) (8)

= arg max
z,θ

n∏
i=1

∑
yi∈L

p(xi|yi,θyi)p(yi|zi)

 p(z)p(θ),

where p(θ) is the prior θ. A possible line of attack to solve the optimization (8) is applying alternating opti-
mization with respect to z and to θ. The optimization with respect to z is as that in (5) and may be solved with
the SegSALSA algorithm proposed in the next section. However, the optimization with respect to θ is rather
involving because neither p(x, z,θ) nor any simple modification of it is decoupled with respect to θk, for k ∈ S.
This is true even under the assumption that those class vector parameters are statistically independent.

To circumvent the above difficulties, we propose an EM based algorithm22 in which x is the observed data, y
is the missing data, and the pair (z,θ) is the entity to be inferred. At the t-th iteration, the E-step and M-step
of the EM algorithm amount to compute, respectively,

E-step: Q(z,θ; zt,θt) ≡ E[ln p(x,y, z,θ)|, zt,θt]
M-step: (zt+1,θt+1) ≡ arg max

z,θ
Q(z,θ; zt,θt).

Having in mind that p(x,y, z,θ) =
∏
i∈S p(xi|yi,θyi)p(yi|zi)p(z) and the statistical link p(yi|zi) given by (6),

the function Q(z,θ; zt,θt) is convex with respect to z and is decoupled with respect to θk, for k ∈ S, provided
that these vector parameters are independent. These characteristics enable the design of effective generalized
EM (GEM) algorithms in which the optimization with respect to z is a convex program similar to that of the
supervised scenario and the optimization with respect to θk is decoupled, for k ∈ S. Further details of the
proposed GEM approach are out of the scope of this paper and will be left for future work.

3. OPTIMIZATION ALGORITHM

Having in mind the model (6) and the prior (7), we may write the MMAP estimation of z as

ẑMMAP = arg min
z∈RK×n

n∑
i=1

− ln
(
pTi zi

)
+ λTV

∑
n∈S

√∥∥Dhz[n]
∥∥2 +

∥∥Dvz[n]
∥∥2 (9)

subject to: z ≥ 0, 1TKz = 1Tn ,

where pi ≡ [p(xi|yi = 1), . . . , p(xi|yi = K)]T and it was assumed that pTi zi > 0 for zi in the feasible set‡. A
straightforward calculus of Hessian matrix of − ln

(
pTi zi

)
yields

∂2

∂zi∂zTi

(
− ln

(
pTi zi

))
=

pip
T
i

(pTi zi)2
,

which is a semipositive definite matrix. We conclude therefore that (9) is convex.

‡This assumption may be discarded.



In this section, we develop an instance of the Split Augmented Lagrangian Shrinkage (SALSA) methodology
introduced by Afonso et al.21 to compute ẑMMAP . We start by rewriting the optimization (9) in the following
equivalent format more suitable to SALSA:

min
z∈RK×n

4∑
i=1

gi(Hiz), (10)

where gi, for i = 1, . . . , 4, denote, closed, proper, and convex functions, and Hi, for i = 1, . . . , 4, denote linear
operators. The particular definitions of these entities for our problem are as follows:

H1 = I, H2 =

(
Dh

Dv

)
, H3 = I, H4 = I,

g1(ξ) =
∑
n∈S − ln

(
pTnξn

)
+
,

g2(ξ) = λTV
∑
n∈S

√∥∥ξh[n]
∥∥2 +

∥∥ξv[n]
∥∥2,

g3(ξ) = ι+(ξ),
g4(ξ) = ι1(1TKξ),

(11)

where I denotes the identity operator, ξ are dummy variables whose dimensions depend on the functions gi,
for i = 1, 2, 3, 4, (x)+ ≡ max{0, x} is the positive part of x, and ln(0) ≡ +∞. In the case of g2, we have
ξ = [(ξh)T , (ξv)T ]T where ξh and ξv are in the range of Dh and Dv, respectively. The function ι+ denotes the
indicator in the set in RK×n+ , i.e., ι+(ξ) = 0 if ξ ∈ RK×n+ and ι+(ξ) =∞ otherwise. By the same token ι1(ξ) is
the indicator in the set {1n}.

We now introduce the variable splitting ui = Hiz, for i = 1, 2, 3, 4, in (10) and convert the original optimiza-
tion into the equivalent constrained form

min
u,z

4∑
i=1

gi(ui) subject to u = Gz, (12)

where u1,u3,u4 ∈ RK×n, u2,∈ R2K×n, u ≡ [uT1 , . . .u
T
4 ]T ∈ R5K×n, and G : RK×n 7→ R5K×n is the linear

operator obtained by columnwise stacking the operators H1, H2, H3, and H4.

The next step consists in applying the SALSA methodology21 to (12). SALSA is essentially an instance of
the alternating method of multipliers (ADMM)33–35 designed to optimize sums of an arbitrary number of convex
terms. The following is a simplified version of a theorem by Eckstein and Bertsekas, adapted to our setting,
stating convergence of SALSA33–35. The notation d = [dT1 ,d

T
2 ,d

T
3 ,d

T
4 ]T stands for scaled Lagrange multipliers

associated with the equality constraint u = Gz, where dim(di) = dim(Hiz).

Theorem 3.1. Assume that Null(G) = {0}, i.e., the null space of operator G is {0}, and let f(u) =
∑J
i=1 gi(ui)

be closed, proper, and convex. Consider arbitrary µ > 0 and z0,d0. Consider three sequences {zk, k = 0, 1, ...},
{uk, k = 0, 1, ...}, and {dk, k = 0, 1, ...} that satisfy

zk+1 = arg min
z

∥∥Gz− uk − dk
∥∥2
F
, (13)

uk+1 = arg min
u
f(u) +

µ

2

∥∥Gzk+1 − u− dk
∥∥2
F
, (14)

dk+1 = dk −
[
Gzk+1 − uk+1

]
, (15)

where ‖x‖F ≡
√

trace{xxT } stands for the Frobenius norm. Then, if (12) has a solution, the sequence {zk}
converges to it; otherwise, at least one of the sequences {uk} or {dk} diverges.

Given that the linear operator G in (12) has Null(G) = {0}, that the objective functions are closed, proper,
and convex and that (12) has solutions§, then the sequence zk generated by (13 – 15) converges to a solution of
(12) for any µ > 0.

§Given that the feasible set is compact, the conditions pTi zi > 0, for i ∈ S, for any point z of the feasible set implies
that objective function (9) is continuous on the feasible set and thus it has a minimum point.



Algorithm SALSA
1. Set k = 0, choose µ > 0, u0 = (u0

1,u
0
2, z

0
3, z

0
4)

2. Set d0 = (d0
1,d

0
2,d

0
3,d

0
4)

3. repeat
4. (∗ update z ∗)
5. zk+1 := arg min

z

∥∥Gz− uk − dk
∥∥2
F

6. (∗ update u ∗)
7. for i = 1 to i = 4
8. do νi := Hiz

k+1 − dki
9. (∗ apply Moreau proximity operators ∗)
10. uk+1

i := arg min
ui

gi(ui) +
µ

2

∥∥ui − νi
∥∥2
F

11. (∗ update Lagrange multipliers d ∗)
12. dk+1

i := −νi + uk+1
i

13. k ← k + 1
14. until stopping criterion is satisfied.

Figure 1. Augmented Lagrangian Shrinkage Algorithm (SALSA).

Fig. 2 shows the pseudocode of the SALSA algorithm. A distinctive feature of SALSA is that optimization
with respect to u is decoupled into optimization problems with respect to the blocks ui, for i = 1, 2, 3, 4, whose
solutions are the so-called Moreau proximity operators (MPOs)32 for the respective convex functions gi, for
i = 1, 2, 3, 4. In order to implement SALSA, we need to solve the quadratic optimization problem in line 5
and to apply the Moreau proximity operators in line 10. Below, we present the solutions to these optimization
subproblems.

3.1 Optimization with respect to z

The solution of the quadratic optimization on line 5 is given by

zk+1 = (G∗G)
−1

G∗
(
uk − dk

)
= (D∗D + 3I)

−1

 ∑
i=1,3,4

(uki + dki ) + D∗(uk2 + dk2)

 ,

where the notation (·)∗ stands for adjoint operation with respect to the Frobenius norm. Having in mind that
the operator D is the columnwise stacking of operators Dh and Dh and that Dhz compute independent cyclic
convolutions on each image of z, then the computation of zk+1 can be carried out efficiently in the frequency
domain using the fast Fourier transform (FFT) with O(Kn lnn) complexity.

3.2 Moreau proximity operators

The optimization subproblems shown in line 10 correspond to evaluating the Moreau proximity operators32 of
the convex functions g1, g2, g3, and g4. In this section, we present closed form expressions for these operators.

3.2.1 Moreau proximity operator for g1

ψg1/µ(ν) = arg min
ξ

(
−

n∑
i=1

ln
(
pTi ξi

)
+

)
+ (µ/2)

∥∥ξ − ν
∥∥2
F
, (16)

where ν ≡ [ν1, · · · ,νn] ∈ RK×n, ξ ≡ [ξ1, · · · , ξn] ∈ RK×n. The optimization (16) is decoupled with respect to
ξi, for i ∈ S, and then it follows that

ψg1/µ(ν) =
(
ψg1/µ(ν1), . . . , ψg1/µ(νn)

)
(17)



with

ψg1/µ(νi) = arg min
ξi

− ln
(
pTi ξi

)
+

+ (µ/2)
∥∥ξi − νi

∥∥2 = νi +
pi
µai

, (18)

where

ai ≡
pTi νi +

√(
pTi νi

)2
+ ‖pi‖2/µ

2
.

The expression (18) was derived by computing the positive root of the equation pTi ∇ψg1/µ = 0 with respect to
pTi ξi and then using this root in the equation ∇ψg1/µ = 0. The complexity to compute ψg1/µ is O(KN).

3.2.2 Moreau proximity operator for g2

ψg2λTV /µ(ν) = arg min
ξ

λTV
∑
n∈S

√∥∥ξh[n]
∥∥2 +

∥∥ξv[n]
∥∥2 + (µ/2)

∥∥ξ − ν
∥∥2
F
, (19)

where ν, ξ ∈ R2K×n and ξh, ξv ∈ R2K×n. The optimization (19) is pixelwise decoupled and yields the vector-
soft-thresholding operator32

ψg2λTV /µ(ν)[n] = max
{

0, ‖ν[n]‖ − λTV /µ
} ν[n]

‖ν[n]‖
. (20)

The complexity to compute ψg2λTV /µ is O((K + 1)N).

3.2.3 Moreau proximity operator for g3

ψg3/µ(ν) = arg min
ξ

ι+(ξ) + (µ/2)
∥∥ξ − ν

∥∥2
F

= arg min
ξ≥0

∥∥ξ − ν
∥∥2
F

= max{0,ν},

where ν, ξ ∈ RK×n. The MPO ψg3/µ is the projection in the first orthant and has complexity ψg3/µ is O(KN).

3.2.4 Moreau proximity operator for g4

ψg4/µ(ν) = arg min
ξ

ι1(1TKξ) + (µ/2)
∥∥ξ − ν

∥∥2
F

= arg min
ξ

∥∥ξ − ν
∥∥2
F

subject to 1TKξ = 1Tn

=

(
I− 1K1TK

K

)
ν +

1K1Tn
K

,

where ν, ξ ∈ RK×n. The MPO ψg4/µ is the projection in the probability simplex and has complexity O(KN).

3.2.5 The SegSALSA algorithm

Fig. 2 shows the pseudocode for the proposed instance of the SALSA algorithm, which we term Segmentation
via Augmented Lagrangian Shrinkage Algorithm (SegSALSA). SegSALSA converges for any µ > 0. However,
the convergence speed is highly sensitive to the value of µ. This issue is currently a hot research topic. In this
work, we have implemented the selection rule discussed in [36, Ch. 3.4] and therein formalized in expression
(3.13). Nevertheless, we have observed experimentally that a value of µ ' 5 yields nearly optimum convergence
speed. Regarding the stopping criterion, we impose that the primal and dual residuals be smaller than a given
threshold, as suggested in [36, Ch. 3.3.2]. We have observed, however, that a fixed number of iterations of the
order of 200 provides excellent results.

Having in mind the computational computational complexities involved in the computation of x and of the
MPOs for g1, g2, g3, g4, we conclude that the SegSALSA computational complexity per iteration is dominated by
the term O(Kn lnn), associated to the computation zk+1 shown in line 5 of SegSALSA.



Algorithm SegSALSA
1. Set k = 0, choose µ > 0, u0 = (u0

1,u
0
2, z

0
3, z

0
4)

2. Set d0 = (d0
1,d

0
2,d

0
3,d

0
4)

3. repeat
4. (∗ update z ∗)

5. zk+1 := (D∗D + 3I)
−1

( ∑
i=1,3,4

(uki + dki ) + D∗(uk2 + dk2)

)
6. (∗ update u using the Moreau proximity operators ∗)
7. ν1 := zk+1 − dk1
8. uk+1

1 := ψg1/µ(ν1)
9. ν2 := D2z

k+1 − dk2
10. uk+1

2 := ψg2λTV /µ(ν2)
11. ν3 := zk+1 − dk3
12. uk+1

3 := ψg3/µ(ν3)
13. ν4 := zk+1 − dk4
14. uk+1

4 := ψg4/µ(ν4)
15. (∗ update Lagrange multipliers d ∗)
16. for i = 1 to i = 4
17. do dk+1

i := −νi + uk+1
i

18. k ← k + 1
19. until stopping criterion is satisfied.

Figure 2. Segmentation via Augmented Lagrangian Shrinkage Algorithm (SegSALSA).

4. RESULTS

In this section, we report experimental results that illustrate the effectiveness of the proposed method with
simulated and real hyperspectral and medical images. For the simulated images, we assume known class densities,
whereas for the real images, we will learn a discriminative class model using the LORSAL algorithm.37 The
segmentation performance is measured in term of pixelwise accuracy (ratio between the number of pixels correctly
classified and the total number of pixels).

4.1 Simulated images

The simulated experiment (Fig. 3) shows the segmentation of a simple synthetic image with four classes and
known class models. The four regions of the image follows a Gaussian distribution with means 1, 2, 3, 4 and
standard deviation 1. Knowing the class models, we obtain a maximum likelihood segmentation, a graph cut
segmentation, and a SegSALSA segmentation. In the case of graph cuts, we compute the MAP segmentation
given by (1), where p(y) is an MLL7 MRF. Both the MLL parameter, controlling the weight of the prior p(y),
and the parameter λTV in the VTV prior/regularizer were hand tuned for optimal performance.

Two results emerge from this experiment. First, the use of a contextual prior causes an significant im-
provement on the performance of the segmentation. This is clear when comparing the maximum likelihood
segmentation (59% accuracy) with either the graph cut segmentation (95% accuracy) or the SegSALSA segmen-
tation (99% accuracy). Second, SegSALSA yields better performance than the graph cut segmentation. The
advantage of SegSALSA is certainly due to the fact that the underlying optimization is exact, which is not the
case with the graph cuts, and due to the better adequacy of the isotropic VTV prior, which allows for clearer
boundary preservation. Fig. 3, part (6), illustrates the hidden field [zi]1, taking a value close to 1 for pixels
belonging to class 1. The ability to preserve sharp discontinuities along different directions is also illustrated.

4.2 Real images

We now present two experiments with real images, showing the effectiveness of the segmentation obtained and
exploring the effect of different weights on the VTV prior (in the medical image experiment) and different
dimensions of the training set (in the hyperspectral image experiment).



(1) True regions. (2) Observed image. (3) ML segmentation.

(4) Graph cut segmentation. (5) SegSALSA segmentation. (6) Latent probabilities.

Figure 3. Segmentation of simulated image. Top row: (1) true regions, (2) observed image, (3) maximum likelihood
segmentation (59% accuracy). Bottom row: (4) graph cut segmentation (95% accuracy), (5) SegSALSA segmentation
(99% accuracy), (6) latent probability for light gray class.

4.2.1 Histology image

In this experiment (Fig. 4), we apply the SegSALSA algorithm to the task of digital pathology image classifi-
cation, specifically classification of Hematoxilyn & Eosin (H&E) stained teratoma tissues. The classification of
this class of images is extremely difficult at a pixel or small patch level, as there is very high intraclass variability
and low interclass variability. Furthermore, a large number of training samples are needed to accurately classify
the images.

In this experiment we classify a 1600 × 1200 Hematoxilyn & Eosin stained teratoma tissue imaged at 40X
magnification, with 4 different classes and using a very small number of training samples. To this extent, we
use 4× 4 non-overlapping patches, with 100 randomly selected training patches per class, amounting to 0.3% of
the data set used for training purposes. The class models are learned using the LORSAL algorithm, which has
shown good classification performance in digital pathology38.

Our aim in this experiment is both to show the performance of the algorithm on hard image classification
problems with small training samples, and to show the effect of the weight of the VTV prior (λTV ) on the
resulting classification. As seen in the bottom row of Fig. 4, it is possible to obtain a smoother classification
with larger values of λTV without loss of sharp boundaries between the classes. The value of accuracy = 84%
obtained with λTV = 4 is considered state-of-the-art.

4.2.2 Hyperspectral image

In this experiment (Fig. 5), we use the SegSALSA algorithm to classify the ROSIS Pavia scene, an hyperspectral
image widely used in hyperspectral image classification. This hyperspectral image was acquired by the ROSIS
optical sensor on the University of Pavia, Italy. It is a 610×340 image with a spatial resolution of 1.3m/pixel, and
103 spectral bands. The image contains nine exclusive land-cover classes, with the accuracy of the classification
being measured on those nine classes. The class models are learned using the LORSAL algorithm.



(1) H&E stained teratoma tissue. (2) Ground truth. (3) ML classification.

(4) SegSALSA classification, (5) SegSALSA classification, (6) SegSALSA classification,
(λTV = 1). (λTV = 2). (λTV = 4).

Figure 4. H&E stained sample of teratoma tissue imaged at 40X magnification containing the following classes: background
(dark blue), fat (light blue), mesenchyme (dark red), and skin (yellow). Top row: (1) original image, (2) ground truth, (3)
ML classification (56% accuracy). Bottom row: (4) SegSALSA classification with λTV = 1 (73% accuracy), (4) SegSALSA
classification with λTV = 2 (81% accuracy), (6) SegSALSA classification with λTV = 4 (84% accuracy).

We run the SegSALSA algorithm for three training sets of different dimensions (20, 40, 200, and 500 samples
per class randomly selected). The accuracy is computed from 10 Monte Carlo runs. For 20 samples per class
we obtain an accuracy of 89.33% ± 3.53; for 40 samples per class we obtain an accuracy of 92.30% ± 1.90; for
200 samples per class we obtain an accuracy of 97.54%± 0.50; for 500 samples per class we obtain an accuracy
of 98.50% ± 0.28. The value of accuracy = 97.54% ± 0.50% obtained with 200 samples per class is considered
state-of-the-art.2

5. CONCLUDING REMARKS

In this paper, we introduce a new approach to supervised image segmentation that avoids the discrete nature
of problem present in many formulations. This is achieved by leveraging on the “hidden Markov measure field”
introduced by Marroquin et al. in 2003. The proposed approach relies on four main ingredients: (a) formu-
lating the image segmentation in the Bayesian framework; (b) introducing a hidden set of real-valued random
fields determining the probability of a given partition; (c) adopting an form of isotropic vector total variation;
and (d) introducing the Segmentation via the Constrained Split Augmented Lagrangian Shrinkage Algorithm
(SegSALSA) to effectively solve the convex program which constitutes the marginal MAP inference of the hidden
field. The effectiveness of the proposed methodology is illustrated with simulated and real hyperspectral and
medical images. In addition, we provide a discussion on how to extend the proposed methodology to unsupervised
and semi-supervised scenarios.
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