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ABSTRACT Dictionary-based HU algorithms were proposed in [4-7].
Among them, we are interested in thrultiple signal classification

Recent development in semiblind dictionary-aided hyperspectral ugMUSIC) method [7]—which is an application of a classical sensor

mixing (HU) shows that a classical method in sensor array proces irray processing approach to the frontier semiblind dictionary-aided
HU problem. MUSIC is a closed-form-based algorithm, and is com-
utationally efficient to implement. Under some ideal assumptions,

SIC can perfectly identify the true endmembers. In practice,

ing, namely, multiple signal classification (MUSIC), provides an ef-
fective way for endmember identification. However, MUSIC (and in
fact, other dictionary-based sparse regression algorithms) assu
that there are no mismatches between the true endmember signar;gc proves to be very useful as a pruning method for pre-
tures ar_1d the_d|ct|onary spectral signatures, which may _be V'Olategelecting candidates from the dictionary, so that a smaller size and
in pr_actlce owing t_o reasons such as endmember variability and Calfﬁore representative dictionary can be constructed for anotheespars
bration errors. This paper presents a robust MUSIC method, where

spectral signature mismatches are incorporated in the original M gression algorithm to perform semiblind HU.
SIC formulation to make the resulting algorithm robust. A compu- While dictionary-based HU is an appealing approach, there are

tationally simple method is derived for the implementation of ro_(:hallenges. In practice, the spectral signature samples in the dictio-
bust MUSIC. Simulation results show that robust MUSIC providesnary may not exactly match the groundruth endmembers’ spectral

imoroved robustness against spectral sianature mismatches than ignatures in the scene. There are several reasons for this. First, the
P 9 P 9 terials’ spectra may vary from time to time and site to site subject

original MUSIC. to diverse physical restrictions, e.g. strength of sunlight and temper-
Index Terms— hyperspectral unmixing, dictionary, robust ature [8]. Second, the calibration procedure for spectral signatures
method, subspace method may introduce errors. Third, the spatial resolutions of spectra in the
dictionary can be different from those of the image, and that can also

1. INTRODUCTION resultin modeling errors. MUSIC is particularly sensitive to spectral

signature mismatches.

A spectral library is a collection of spectral signatures of materials N this work, we develop a robust MUSIC method for tackling
acquired in controlled or ideal environments, e.g., in laboratoriesthe spectral signature mismatch problem. We first give a robust MU-
There are several available libraries, provided by government ager?!C formulation, wherein the goal is to identify spectral signature
cies and research institutes. For example, the the U.S. Geologicé®Mples that are close to true endmember signatures, rather than ex-

Survey (U.S.G.S.) library [1] contains remotely sensed and exttacte@ctly equal. Such an objective is meaningful since such identified
spectral signatures of ovéB00 materials. spectral signatures, albeit inexact, can still provide useful informa-

The rich knowledge of materials’ spectra in the existing librariestion. such as the classes of the materials in the image. Also, as men-
provides new opportunities for hyperspectral umixing (HU). By us-tioned above, such detected spectra can be used as a pruned dic-
ing an existing library as a dictionary, and by assuming the "n_tlona.ry for sparse regression. Then we derive aS|mpIe-t.o-corr.1pute
ear mixture model, we can formulate HU as a problem of selecting!gorithm based on the proposed robust MUSIC formulation. Simu-
spectra from the dictionary to fit the mixture model. Such a semiblations are used to show the effectiveness of the proposed algorithm.
lind dictionary-aided HU problem is fundamentally identical to the
well-known basis selection or sparse regression problem in compres- 2 PROBLEM STATEMENT
sive sensing (CS), and thus many CS tools can be applied for tack-
ling the HU problem. There are several advantages with semiblingy yescribe semiblind dictionary-aided HU, let
dictionary-based HU. First, different from the completely blind HU
approaches (e.g., [2, 3]), dictionary-based methods do notreequ
certain restrictive assumptions, such as the pure-pixel assumptions,
to perform HU. Second, dictionary-based methods may not requir§enpte a given spectral library, where eagh € RM, k —

knowledge of the number of endmembers. 1,...,K, is a spectral signature of a particular materiad, is
*E-mail: xtu@ee.cuhk.edu.hk, wkma@ieee. org. the rtl)umfk;e.r offspe?tral bands, ahd is Itqhe dlctllcona;]y sllng. GTge
TE-mail: bioucas@Ix.it.pt Supported by Portuguese Sciendéfachnol- number K is often large (e.g., more thatB00 for the U.S.G.S.

ogy Foundation under Projects PEst-OE/EEI/LA0008/2018RADC/EEI-  library), and thusAp is over-complete. We are given a measured
PRO/1470/2012. hyperspectral data sgf1], . .., y[L], wherey[¢] € R denotes the
fE-mail: thchan@ieee.org. measured spectral vector at pixeland L is the number of pixels.
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LetY = [y[0],...,y[L — 1]]. Under the linear mixing model, the whereB = [by,..., by ] now denotes the endmember matrix. We
data matrixY” can be modeled as assume that there are errors between an endmember sighaamd
its corresponding dictionary sample. To be specific, we model

Y =AS+V, @)
whereS = [ s[0],...,s[L — 1] ]; s[f] = [s1]d],-..,sn[d] |7, ko = bn - en, g
sn[f] > 0foralln =1,..., N, isthe abundance vector at pixelV for somek,, € {1,..., K}, wheree,, is an error vector. The spectral
is the number of endmember®; = [v[0],...,v[L — 1] ] is noise;  error vectors are assumed to be bounded:
A € RM*N is the endmember matrix. In semiblind dictionary-
aided HU, we assume that every column Afis covered by the llenll2<e, n=1,...,N,
dictionary; i.e.,
for somee > 0.
A=ap,. .. ak ], 2 The robust MUSIC_method is proposed as foIIo_ws. We rot_)ustify
kn€f{l,....,K}, n=1,...,N. 3) the MUSIC procedure in the last section by replaciagssic (k) in
(5) with
The problem is as follows: Given the dictionady/p, identify the Tl
index setA = {k1,..., kn} from the measured daf. Note that k) = min (ax — &) Py (ar — &) 8a
Cur = ) ~yrmusic (k) 3 (8a)
onceA is identified, we can use it to construct the endmember ma- ¢eRM lar — &3
trix and then perform unmixing. In this work, the number of end- st |[€ll2 < 6, (8b)
membersV is assumed to be known, or has been acquired by other
algorithms such as HySiMe [9]. for a given parameted > 0. The rationale of the robust MUSIC

(RMUSIC) problem above is to find a vectgrto compensate the
error terme,,, thereby attempting to make the method more resilient
to spectral signature mismatches. An illustrative example is shown
The index set selection problem mentioned in the last section can Hg Fi9- 1 to demonstrate why RMUSIC may be more preferable than
tackled by a subspace method called MUSIC [7,10]. The method!USIC. One can see in the example that if one applies MUSIC di-
is briefly described as follows. Under the assumption that < rectly,a; (when scaled to the unit 2-norm circle) results in a smaller

spark(Ap) — 1, wherespark(X) = r means that any columns projection residual (i.esnusic(j) ) than that of the desiredy.
of X are linearly independent, we have However, by using RMUSIC, this confusion can be fixed.

The key issue with realizing RMUSIC lies in solving prob-
Pia,=0s ke A, 4) lem (8). Problem (8) is aingle-ratio quadratic fractional program
N ) which is quasi-convex and can be optimally solved, e.g., by the
where Px denotes the orthogonal complement projectoXaf In - pinkelbach algorithmand its variants [11]. While this means that
practice, ifrank(A) = rank(S) = N, a basis ofR(A), denoted e can implement RMUSIC by existing optimization algorithms,
by Us € R***, can be estimated by principal component analysiSye have to solvei™ such quasi-convex problems—which can stil
(PCA) or HySiMe. Hence, we can identify the endmember index sepe inefficient for largek (often true in practice). To circumvent this

3. REVIEW OF THE MUSIC APPROACH

by the following procedure: difficulty, we consider a compromise by approximatingausic (k)
1. Fork=1,..., K, calculate in (8) via a simple-to-compute lower bound. To derive the lower
bound, we first re-expresgvusic (k) as
TPJ_
yusic(k) = LUSQM (5) N 2
llax]2 nvsic(k) = min | Perg (ar — €)]],
o lela<s || Py, (ax — E)3 + | Pus (ax — €13
2. DetermineA = {ki,...,kn} such that fom = 1,..., N, )
we haveyvusic (kn) < yausic(j) for all j ¢ A. = min_ %
<
The above procedure is called MUSIC. Notice that in (5), the de- I€ll2=" 1T 9)

nominator||ax||2 is introduced to avoid numerical problems caused\yhere P, denotes the projector on ®(U's), and
by scalings ofa’s. s

As can be seen above, MUSIC is easy to implement. Under Hpés (a) — g)”
some ideal assumptions, e.g., no noise, MUSIC is shown to guaran- (&) = W- (10)
tee perfect identification of. In practice, it was found that MUSIC Us |Gk 2
is useful for dictionary pruning; please see [7] for the details. Since the objective function of (9) is a monotone increasing function
of n?(€) € [0, 00), finding a lower bound of the former is the same
4. ROBUST MUSIC FOR IMPERFECT DICTIONARIES as finding a lower bound of (10). It can be shown that
The crucial assumption with dictionary-based HU is that for each e (€) H|p§s aill2 — ”Pﬁs£”2| (11a)
endmember, the dictionary has a spectral signature sample that ex- = ||Pugsakl2 + || Pus€ll2
actly matches the true endmember spectral signature. As discussed || P&, a2 — || P& €13
in Introduction, this may be not the case in reality. Herein we con- = 2 = (11b)
sider a spectral signature mismatch model, and then develop a robust | Pugarllz + /€15 — || P €13
subspace method for tackling the issue. To this end, we modify the n 1 .2
signal model in (1) as |1 Pgs axll2 — || Pors €ll3] (11c)

2 _1pL g2
Y =BS+V, (6) | Pusakllz + /6 ||PUS£H2



wherek™ = argming—1,... .k |lax|l2. The setup of RMUSIC is
described as follows. We choose the RMUSIC paramétey the
following formula

11—«

T l+4a
wherea € [0, 1] is given. The parameter controls the correlation
between the RMUSIC-resulted dictionary membegr — £ and the
original one. Specifically, unddf¢|l. < 4, it can be shown that

the above choice of leads to% > «. Moreover,

we have RMUSIC admitting more endmembers than the true num-
ber of endmembers, by selecting a numbeNof > N indices in

the RMUSIC procedure. The same applies to MUSIC. In practice,
such a set of over-admitted endmembers can be used as the pruned
dictionary for sparse regression [7]. We consider the the following
detection probability

lar-l2,

Fig. 1. An illustration of the RMUSIC idea. In this figure, we as-
sume thatt € A andj ¢ A; ax is perturbed by modeling error N
so that it lives outsid® (B). The distances between pointsd, ¢’ Pr {A C A} (13)
andd’ and the horizontal line representifig( B) are ymusic(k),

3 . . whereA is an algorithm’s extracted dictionary index set, as the per-
tusic(7), Yratusic (k) andyrarusic (), respectively. ereA is an algo s extracted dictionary index set, as the pe

formance measurement, since sparse regression works aklyif
A.

In Fig. 4, we show the index set detection probabilities of MU-
%SIC/RMUSIC under various DMERs. The correctly calibrated dic-
tionary here is identical to that used in the toy example. In each trial,
N = 8 true endmembers are randomly picked, and the available dic-

where (11a) is by the triangle inequality, and (11c) results from th
constraint| ||z < 6. Letd = || Pg £||2, which satisfied € [0, 4.
The minimization of (11c) ovelt¢||2 < 6 can be simplified to

pL 0 tionary is obtained by adding modeling errors which are generated

. ’H o @ ll2 — | followi h i i iid. G ian distribution;

nj = min — (12)  following the zero-mean unit-variance i.i.d. Gaussian distribution;
0=0<8 || Pugarll2 + V6?0 we also scale the modeling errors such thattmerms are smaller

than or equal te. We setSNR = 35dB andN,, = 40. The re-
Sults are averaged froir000 trials. We can see from the figure that
MUSIC is sensitive to modeling errors; even under high DMERS,
MUSIC is not able to identify alk,,’s. Generally, using RMUSIC

Problem (12) can be solved easily by a line search algorithm, e.g
bisection. After obtaining;;, we substitute;;, into (9) to get an
approximation ofyrmusic(k):

(77*)2 with o = 0.85 and0.95 both improve the detection probability of
rmustc (k) = *+ A under all DMERSs. Interestingly, one can see that RMUSIC with
()" +1 a = 0.75 admits the highest detection probability in lower DMER

range; however, when the DMER is higher, using such a relatively
small« leads to a slight performance degradation of RMUSIC. The
reason is that smaller implies that one can change.’s more sig-
nificantly with the RMUSIC criterion. Hence, it may confuse several
5. SIMULATIONS similar a;.’s with each other. This observation suggests that a more
. ) conservative choice af should be safer for implementing RMUSIC
We first use a toy example to show the effectiveness of RMUSIC;, practice.
The signal-to-noise radio (SNR) in this example2ixB. A sub- Fig. 5 shows the index set detection probabilities of RMUSIC
set of the U.S.G.S. library witli = 257 spectra is adopted as the using differentV,,’s. The result of MUSIC usingV, = 60 is also
correctly calibrated dictionaryN = 6 endmembers are randomly presented as a benchmark. In this simulation, wenfix= 0.85
picked from this library as the true endmembers; modeling errorgor RMUSIC: the other settings are exactly the same as those in the
with € =045 are manuglly added to the dlctlonary members, CoNprevious figure. As expected, by increasiNg, the detection prob-
structing the available dictionary. The correctly calibrated endmemzyijities of RMUSIC are consistently improved. Note that RMUSIC
bers and the corresponding available library emembers are showp, N, = 40 already exhibits higher detection probabilities than
in Fig. 2. We set = 1.1e in this example. The signal subspace that of MUSIC with N, = 60 under all DMERs. This, again, ver-
R(Us) is estimated by HySiMe. Fig. 3(a)-(b) show the identifica- ifies the robustness of RMUSIC against model mismatches. From a
tion results of RMUSIC and MUSIC, respectively. We can see thapactical viewpoint, this also suggests that RMUSIC provides a more

RMUSIC gives good identification: thgrausic (kn)'s associated  promising way for dictionary pruning in comparison to MUSIC.
with k,, € A are all very small, which can visually be distinguished

from the values of mos{rmusic(j)’s for j ¢ A. As for MUSIC,
we observe thainvusic (kn)’s for k. € A are in general also small,
while someywusic(kr)’s (€.9., the most left one) are not easily
distinguished from many other residuals.

Next, we consider a Monte Carlo simulation. We quantify the
modeling error level by defining the followindictionary to model-
ing error ratio (DMER):

Note again thafrmusic (k) is a lower bound approximation, viz.
Armusic (k) < yrmusic (k).

6. CONCLUSION

To conclude, a robust MUSIC algorithm was derived for semib-
lind dictionary-aided HU in the presence of spectral signature mis-
matches. Our simulation results showed that the robust MUSIC al-
gorithm provides better endmember identification performance than
the conventional MUSIC. As a future work, we will test how robust

DMER(dB) = 10log,, ([|a- \|§/€2) ’ MUSIC performs in real hyperspectral data.
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Fig. 22 The calibrated endmembebg’s (dot lines) and the corre-
sponding available dictionary membets'’s (solid lines).
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Fig. 5 ThePr{A c A}'s of MUSIC and RMUSIC with different
N,'s under various DMERsy = 0.85 for RMUSIC.
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Fig. 3: The approximated RMUSIC projection residuals (upper) and
the MUSIC projection residuals (lower) using the example in Fig. 2.
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