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ABSTRACT

Recent development in semiblind dictionary-aided hyperspectral un-
mixing (HU) shows that a classical method in sensor array process-
ing, namely, multiple signal classification (MUSIC), provides an ef-
fective way for endmember identification. However, MUSIC (and in
fact, other dictionary-based sparse regression algorithms) assumes
that there are no mismatches between the true endmember signa-
tures and the dictionary spectral signatures, which may be violated
in practice owing to reasons such as endmember variability and cali-
bration errors. This paper presents a robust MUSIC method, wherein
spectral signature mismatches are incorporated in the original MU-
SIC formulation to make the resulting algorithm robust. A compu-
tationally simple method is derived for the implementation of ro-
bust MUSIC. Simulation results show that robust MUSIC provides
improved robustness against spectral signature mismatches than the
original MUSIC.

Index Terms— hyperspectral unmixing, dictionary, robust
method, subspace method

1. INTRODUCTION

A spectral library is a collection of spectral signatures of materials
acquired in controlled or ideal environments, e.g., in laboratories.
There are several available libraries, provided by government agen-
cies and research institutes. For example, the the U.S. Geological
Survey (U.S.G.S.) library [1] contains remotely sensed and extracted
spectral signatures of over1300 materials.

The rich knowledge of materials’ spectra in the existing libraries
provides new opportunities for hyperspectral umixing (HU). By us-
ing an existing library as a dictionary, and by assuming the lin-
ear mixture model, we can formulate HU as a problem of selecting
spectra from the dictionary to fit the mixture model. Such a semib-
lind dictionary-aided HU problem is fundamentally identical to the
well-known basis selection or sparse regression problem in compres-
sive sensing (CS), and thus many CS tools can be applied for tack-
ling the HU problem. There are several advantages with semiblind
dictionary-based HU. First, different from the completely blind HU
approaches (e.g., [2, 3]), dictionary-based methods do not require
certain restrictive assumptions, such as the pure-pixel assumptions,
to perform HU. Second, dictionary-based methods may not require
knowledge of the number of endmembers.
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Dictionary-based HU algorithms were proposed in [4–7].
Among them, we are interested in themultiple signal classification
(MUSIC) method [7]—which is an application of a classical sensor
array processing approach to the frontier semiblind dictionary-aided
HU problem. MUSIC is a closed-form-based algorithm, and is com-
putationally efficient to implement. Under some ideal assumptions,
MUSIC can perfectly identify the true endmembers. In practice,
MUSIC proves to be very useful as a pruning method for pre-
selecting candidates from the dictionary, so that a smaller size and
more representative dictionary can be constructed for another sparse
regression algorithm to perform semiblind HU.

While dictionary-based HU is an appealing approach, there are
challenges. In practice, the spectral signature samples in the dictio-
nary may not exactly match the groundtruth endmembers’ spectral
signatures in the scene. There are several reasons for this. First, the
materials’ spectra may vary from time to time and site to site subject
to diverse physical restrictions, e.g. strength of sunlight and temper-
ature [8]. Second, the calibration procedure for spectral signatures
may introduce errors. Third, the spatial resolutions of spectra in the
dictionary can be different from those of the image, and that can also
result in modeling errors. MUSIC is particularly sensitive to spectral
signature mismatches.

In this work, we develop a robust MUSIC method for tackling
the spectral signature mismatch problem. We first give a robust MU-
SIC formulation, wherein the goal is to identify spectral signature
samples that are close to true endmember signatures, rather than ex-
actly equal. Such an objective is meaningful since such identified
spectral signatures, albeit inexact, can still provide useful informa-
tion, such as the classes of the materials in the image. Also, as men-
tioned above, such detected spectra can be used as a pruned dic-
tionary for sparse regression. Then we derive a simple-to-compute
algorithm based on the proposed robust MUSIC formulation. Simu-
lations are used to show the effectiveness of the proposed algorithm.

2. PROBLEM STATEMENT

To describe semiblind dictionary-aided HU, let

AD = [ a1, . . . ,aK ]

denote a given spectral library, where eachak ∈ R
M , k =

1, . . . ,K, is a spectral signature of a particular material,M is
the number of spectral bands, andK is the dictionary size. The
numberK is often large (e.g., more than1300 for the U.S.G.S.
library), and thusAD is over-complete. We are given a measured
hyperspectral data sety[1], . . . ,y[L], wherey[ℓ] ∈ R

M denotes the
measured spectral vector at pixelℓ, andL is the number of pixels.



LetY = [ y[0], . . . ,y[L− 1] ]. Under the linear mixing model, the
data matrixY can be modeled as

Y = AS + V , (1)

whereS = [ s[0], . . . , s[L − 1] ]; s[ℓ] = [ s1[ℓ], . . . , sN [ℓ] ]T ,
sn[ℓ] ≥ 0 for all n = 1, . . . , N , is the abundance vector at pixelℓ; N
is the number of endmembers;V = [ v[0], . . . ,v[L− 1] ] is noise;
A ∈ R

M×N is the endmember matrix. In semiblind dictionary-
aided HU, we assume that every column ofA is covered by the
dictionary; i.e.,

A = [ ak1
, . . . ,akN

], (2)

kn ∈ { 1, . . . ,K}, n = 1, . . . , N. (3)

The problem is as follows: Given the dictionaryAD, identify the
index setΛ = {k1, . . . , kN} from the measured dataY . Note that
onceΛ is identified, we can use it to construct the endmember ma-
trix and then perform unmixing. In this work, the number of end-
membersN is assumed to be known, or has been acquired by other
algorithms such as HySiMe [9].

3. REVIEW OF THE MUSIC APPROACH

The index set selection problem mentioned in the last section can be
tackled by a subspace method called MUSIC [7, 10]. The method
is briefly described as follows. Under the assumption that|Λ| <
spark(AD) − 1, wherespark(X) = r means that anyr columns
of X are linearly independent, we have

P
⊥
Aak = 0 ⇔ k ∈ Λ, (4)

whereP⊥
X denotes the orthogonal complement projector ofX. In

practice, ifrank(A) = rank(S) = N , a basis ofR(A), denoted
byUS ∈ R

M×N , can be estimated by principal component analysis
(PCA) or HySiMe. Hence, we can identify the endmember index set
by the following procedure:

1. Fork = 1, . . . ,K, calculate

γMUSIC(k) =
aT
k P

⊥
US

ak

‖ak‖22
. (5)

2. DetermineΛ̂ = {k1, . . . , kN} such that forn = 1, . . . , N ,
we haveγMUSIC(kn) < γMUSIC(j) for all j /∈ Λ̂.

The above procedure is called MUSIC. Notice that in (5), the de-
nominator‖ak‖2 is introduced to avoid numerical problems caused
by scalings ofak ’s.

As can be seen above, MUSIC is easy to implement. Under
some ideal assumptions, e.g., no noise, MUSIC is shown to guaran-
tee perfect identification ofΛ. In practice, it was found that MUSIC
is useful for dictionary pruning; please see [7] for the details.

4. ROBUST MUSIC FOR IMPERFECT DICTIONARIES

The crucial assumption with dictionary-based HU is that for each
endmember, the dictionary has a spectral signature sample that ex-
actly matches the true endmember spectral signature. As discussed
in Introduction, this may be not the case in reality. Herein we con-
sider a spectral signature mismatch model, and then develop a robust
subspace method for tackling the issue. To this end, we modify the
signal model in (1) as

Y = BS + V , (6)

whereB = [ b1, . . . , bN ] now denotes the endmember matrix. We
assume that there are errors between an endmember signaturebn and
its corresponding dictionary sample. To be specific, we model

akn
= bn + en, (7)

for somekn ∈ {1, . . . ,K}, whereen is an error vector. The spectral
error vectors are assumed to be bounded:

‖en‖2 ≤ ǫ, n = 1, . . . , N,

for someǫ > 0.
The robust MUSIC method is proposed as follows. We robustify

the MUSIC procedure in the last section by replacingγMUSIC(k) in
(5) with

γRMUSIC(k) = min
ξ∈RM

(ak − ξ)TP⊥
US

(ak − ξ)

‖ak − ξ‖22
(8a)

s.t. ‖ξ‖2 ≤ δ, (8b)

for a given parameterδ > 0. The rationale of the robust MUSIC
(RMUSIC) problem above is to find a vectorξ to compensate the
error termen, thereby attempting to make the method more resilient
to spectral signature mismatches. An illustrative example is shown
in Fig. 1 to demonstrate why RMUSIC may be more preferable than
MUSIC. One can see in the example that if one applies MUSIC di-
rectly,aj (when scaled to the unit 2-norm circle) results in a smaller
projection residual (i.e.,γMUSIC(j) ) than that of the desiredak.
However, by using RMUSIC, this confusion can be fixed.

The key issue with realizing RMUSIC lies in solving prob-
lem (8). Problem (8) is asingle-ratio quadratic fractional program,
which is quasi-convex and can be optimally solved, e.g., by the
Dinkelbach algorithmand its variants [11]. While this means that
we can implement RMUSIC by existing optimization algorithms,
we have to solveK such quasi-convex problems—which can still
be inefficient for largeK (often true in practice). To circumvent this
difficulty, we consider a compromise by approximatingγRMUSIC(k)
in (8) via a simple-to-compute lower bound. To derive the lower
bound, we first re-expressγRMUSIC(k) as

γRMUSIC(k) = min
‖ξ‖2≤δ

∥

∥P⊥
US

(ak − ξ)
∥

∥

2

2

‖P⊥
US

(ak − ξ)‖22 + ‖PUS
(ak − ξ)‖22

= min
‖ξ‖2≤δ

η2
k(ξ)

η2
k(ξ) + 1

,

(9)
wherePUS

denotes the projector on toR(US), and

ηk(ξ) =

∥

∥P⊥
US

(ak − ξ)
∥

∥

2

‖PUS
(ak − ξ)‖2

. (10)

Since the objective function of (9) is a monotone increasing function
of η2(ξ) ∈ [0,∞), finding a lower bound of the former is the same
as finding a lower bound of (10). It can be shown that

ηk(ξ) ≥
∣

∣‖P⊥
US

ak‖2 − ‖P⊥
US

ξ‖2
∣

∣

‖PUS
ak‖2 + ‖PUS

ξ‖2
(11a)

=

∣

∣‖P⊥
US

ak‖2 − ‖P⊥
US

ξ‖22
∣

∣

‖PUS
ak‖2 +

√

‖ξ‖22 − ‖P⊥
US

ξ‖22
, (11b)

≥
∣

∣‖P⊥
US

ak‖2 − ‖P⊥
US

ξ‖22
∣

∣

‖PUS
ak‖2 +

√

δ2 − ‖P⊥
US

ξ‖22
, (11c)
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Fig. 1: An illustration of the RMUSIC idea. In this figure, we as-
sume thatk ∈ Λ and j /∈ Λ; ak is perturbed by modeling error
so that it lives outsideR(B). The distances between pointsc, d, c′

andd′ and the horizontal line representingR(B) areγMUSIC(k),
γMUSIC(j), γRMUSIC(k) andγRMUSIC(j), respectively.

where (11a) is by the triangle inequality, and (11c) results from the
constraint‖ξ‖2 ≤ δ. Let θ = ‖P⊥

US
ξ‖2, which satisfiesθ ∈ [0, δ].

The minimization of (11c) over‖ξ‖2 ≤ δ can be simplified to

η⋆
k = min

0≤θ≤δ

∣

∣‖P⊥
US

ak‖2 − θ
∣

∣

‖PUS
ak‖2 +

√
δ2 − θ2

. (12)

Problem (12) can be solved easily by a line search algorithm, e.g.,
bisection. After obtainingη⋆

k, we substituteη⋆
k into (9) to get an

approximation ofγRMUSIC(k):

γ̂RMUSIC(k) =
(η⋆

k)
2

(η⋆
k)

2 + 1
.

Note again that̂γRMUSIC(k) is a lower bound approximation, viz.
γ̂RMUSIC(k) ≤ γRMUSIC(k).

5. SIMULATIONS

We first use a toy example to show the effectiveness of RMUSIC.
The signal-to-noise radio (SNR) in this example is20dB. A sub-
set of the U.S.G.S. library withK = 257 spectra is adopted as the
correctly calibrated dictionary.N = 6 endmembers are randomly
picked from this library as the true endmembers; modeling errors
with ǫ = 0.45 are manually added to the dictionary members, con-
structing the available dictionary. The correctly calibrated endmem-
bers and the corresponding available library emembers are shown
in Fig. 2. We setδ = 1.1ǫ in this example. The signal subspace
R(US) is estimated by HySiMe. Fig. 3(a)-(b) show the identifica-
tion results of RMUSIC and MUSIC, respectively. We can see that
RMUSIC gives good identification: thêγRMUSIC(kn)’s associated
with kn ∈ Λ are all very small, which can visually be distinguished
from the values of most̂γRMUSIC(j)’s for j /∈ Λ. As for MUSIC,
we observe thatγMUSIC(kn)’s for kn ∈ Λ are in general also small,
while someγMUSIC(kn)’s (e.g., the most left one) are not easily
distinguished from many other residuals.

Next, we consider a Monte Carlo simulation. We quantify the
modeling error level by defining the followingdictionary to model-
ing error ratio (DMER):

DMER(dB) = 10 log10
(

‖ak⋆‖22/ǫ2
)

,

wherek⋆ = argmink=1,...,K ‖ak‖2. The setup of RMUSIC is
described as follows. We choose the RMUSIC parameterδ by the
following formula

δ =
1− α

1 + α
‖ak⋆‖2,

whereα ∈ [0, 1] is given. The parameterα controls the correlation
between the RMUSIC-resulted dictionary memberak⋆ − ξ and the
original one. Specifically, under‖ξ‖2 ≤ δ, it can be shown that

the above choice ofδ leads to (ak⋆−ξ)Tak⋆

‖ak⋆−ξ‖2‖ak⋆‖2
≥ α. Moreover,

we have RMUSIC admitting more endmembers than the true num-
ber of endmembers, by selecting a number ofNu > N indices in
the RMUSIC procedure. The same applies to MUSIC. In practice,
such a set of over-admitted endmembers can be used as the pruned
dictionary for sparse regression [7]. We consider the the following
detection probability

Pr
{

Λ ⊂ Λ̂
}

(13)

whereΛ̂ is an algorithm’s extracted dictionary index set, as the per-
formance measurement, since sparse regression works only ifΛ ⊂
Λ̂.

In Fig. 4, we show the index set detection probabilities of MU-
SIC/RMUSIC under various DMERs. The correctly calibrated dic-
tionary here is identical to that used in the toy example. In each trial,
N = 8 true endmembers are randomly picked, and the available dic-
tionary is obtained by adding modeling errors which are generated
following the zero-mean unit-variance i.i.d. Gaussian distribution;
we also scale the modeling errors such that the2-norms are smaller
than or equal toǫ. We setSNR = 35dB andNu = 40. The re-
sults are averaged from1000 trials. We can see from the figure that
MUSIC is sensitive to modeling errors; even under high DMERs,
MUSIC is not able to identify allkn’s. Generally, using RMUSIC
with α = 0.85 and0.95 both improve the detection probability of
Λ under all DMERs. Interestingly, one can see that RMUSIC with
α = 0.75 admits the highest detection probability in lower DMER
range; however, when the DMER is higher, using such a relatively
smallα leads to a slight performance degradation of RMUSIC. The
reason is that smallerα implies that one can changeak ’s more sig-
nificantly with the RMUSIC criterion. Hence, it may confuse several
similarak ’s with each other. This observation suggests that a more
conservative choice ofα should be safer for implementing RMUSIC
in practice.

Fig. 5 shows the index set detection probabilities of RMUSIC
using differentNu’s. The result of MUSIC usingNu = 60 is also
presented as a benchmark. In this simulation, we fixα = 0.85
for RMUSIC; the other settings are exactly the same as those in the
previous figure. As expected, by increasingNu, the detection prob-
abilities of RMUSIC are consistently improved. Note that RMUSIC
with Nu = 40 already exhibits higher detection probabilities than
that of MUSIC withNu = 60 under all DMERs. This, again, ver-
ifies the robustness of RMUSIC against model mismatches. From a
practical viewpoint, this also suggests that RMUSIC provides a more
promising way for dictionary pruning in comparison to MUSIC.

6. CONCLUSION

To conclude, a robust MUSIC algorithm was derived for semib-
lind dictionary-aided HU in the presence of spectral signature mis-
matches. Our simulation results showed that the robust MUSIC al-
gorithm provides better endmember identification performance than
the conventional MUSIC. As a future work, we will test how robust
MUSIC performs in real hyperspectral data.
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Fig. 2: The calibrated endmembersbk ’s (dot lines) and the corre-
sponding available dictionary membersak ’s (solid lines).
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Fig. 4: ThePr{Λ ⊂ Λ̂}’s of MUSIC and RMUSIC with different
α’s under various DMERs.
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