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Abstract
This paper addresses the problem of object recogni-
tion based on contour descriptions. Two approaches,
namely hidden Markov models (HMM) and syntac-
tic modeling based on stochastic finite-state grammars
(SFSG), are analyzed and applied to the classification
of hardware tools.

1 Introduction

The recognition of 2D objects requires two steps:
the extraction of image features and their classifica-
tion. Several methods exist to perform each of these
operations. A large attention has been focused on the
analysis of the object boundary using global and local
representations. Global representations (e.g., Fourier
descriptors, invariant moments) are easy to manipu-
late and classify. However, its computation depends
on the entire shape and, therefore, local deformations
and occlusions often produce strong deviations in all
the features. Local features (e.g., differential chain
codes) are more robust against deformations and oc-
clusions but they require sophisticated classification
techniques.

Object recognition based on string contour descrip-
tions are typically performed using string matching
techniques [1]; preliminary results on shape cluster-
ing using stochastic grammars are reported in [3]. In
this paper, a model-based approach is addressed. Two
modeling / classification strategies, which are usu-
ally studied separately, are considered: hidden Markov
models (HMM) [9] and syntactic models [11]. Hid-
den Markov models have been intensively used in the
context of speech recognition as a tool to represent
the dynamic properties of the speech features (e.g.,
spectral coeflicients) during an utterance [9, 6]. The
application of HMMs in object and shape recognition
is less popular. However, they have been used with
success in shape and cursive handwritten recognition
(e.g., see [5, 10]). Typical applications of symtactic
methods have been in the areas of pattern recogni-
tion [5], speech recognition [9], natural languages
and programming languages. In this paper, HMMs
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and syntactic models based on stochastic finite-state
grammars are applied and compared in object recog-
nition based on contour descriptions extracted from
images of hardware tools.

2 Hidden Markov Models and

Stochastic Finite State Grammars

HMMSs and SFSG share many common character-
istics, being instances of a more general class of mod-
els designated by stochastic finite state networks [9].
They both generate an internal (non-observable) se-
quence of symbols (states) and a sequence of external
(observable) symbols, using probabilistic rules. Based
on the theory of stochastic processes, they however as-
sume different formalisms and distinct mechanisms of
inference.

Formally, a HMM is characterized by: H =
(Q,X, A, B,m), where () is a finite set of states ¢; ; 2
is a set of possible observation symbols; A is a matrix
with the state transition probabilities (4 : Q X Q@ —
[0,1]); B represents the observation symbol probabil-
ity distribution in a state; and 7 is the initial state
distribution. Given a HMM, the probability of the
observation sequence x = x5 ...2,(x; € X) is given
by

p(lH) = 32, 4. ™(@)B(q, 21)Alq1, 42) B(gz, 72)
e A(anla qn)B(qnv xn)

In order to define a HMM one needs to know its
structure (number of states and allowed state transi-
tions) and parameter values. The structure of HMMs
is chosen a priori; tuning to the data is typically per-
formed on a trial basis, eventually conditioned by ex-
istent knowledge. Two types of architectures are usu-
ally considered: 1-totally connected models, where all
state transitions are allowed; 2- left-to-right models,
where temporal constraints are taken into account by
defining unique initial and final states, and states are
ordered in such a way that if ¢; < ¢; then A(g;, ¢;) = 0.
Totally connected models are general but they may
depend on a large number of parameters which are
hard to estimate. Therefore they are not necessar-
ily the best solution. Parameter estimation is per-
formed in a non optimal way. Two popular methods



are the Baum-Welch re-estimation algorithm and the
Viterbi estimation algorithm [9]. The Baum-Welch
algorithm tries to optimize the likelihood function of
the training set applying an EM approach. The al-
gorithm converges to local maxima of the likelihood
function which depend on the algorithm initialization.
The Viterbi estimation is simpler but sub-optimal;
the highest probability state sequence associated with
each training sequence is computed. The model pa-
rameters are then estimated by computing the relative
frequencies of transitions and output symbols, assum-
ing that the training sequences were generated by the
estimated state sequence. The output of the Viterbi
algorithm also depend on the initial estimates of the
model parameters.

A SFSG [11] is defined by G = (N, X, P,0) , where
N a finite set of non-terminal symbols; X is the set of
observable symbols (vocabulary); P is a finite set of
productions of the form p;; : A — aB or p;; : A — a,
A, B € N,a € X, p,;; being the rule probability; o € N
is the start symbol. Given a SFSG, G, the probability
of © = x1x2 ...z, being generated by G is given by

p(z|G) = ZPJ (agx>7

where 7 denotes one of the k possible derivations and
;] (0‘ LY x) represents the probability of the jth

derivation of x from the start symbol ¢ according to
the rules in P. A SFSG can be represented by a graph
where each node is associated with a non-terminal
symbol, with an initial node labeled o, a final ab-
sorbing node, and the arcs link nodes associated by
rules in P. The number and structure of the rules are
automatically inferred from the training data set by
grammatical inference methods [4, 8]. Most of these
procedures use heuristic information to detect com-
mon structures in string patterns, modeled in terms
of rules. Maximum likelihood techniques applied to
the estimation of rule probabilities of non-ambiguous
grammars (only one derivation is possible for each
string in the language) lead to the computation of rela-
tive frequencies of rules usage in the derivation of the
training set. According to the method of stochastic
presentation, the probabilistic nature of the patterns
are represented by the relative frequency of occurrence
of samples in the training set. When ambiguous gram-
mars are considered, non-optimal estimates based on
single derivation per sample are common practice.

It can be shown [2] that the above formalism of
HMM can be put in an equivalent form with observa-
tion probability distributions in the transitions, des-
ignated by HMMT. While this general model is not
equivalent to a SFSG, HMMSs with observation prob-
ability distributions in the transitions and with final
state are equivalent to SFSGs. The two approaches
therefore differ mainly on the way of definition of the
network structure, the first assuming an a priori struc-

ture and the latter inferring it from the data, based on
some heuristic information underlying the grammati-
cal inference procedure. Estimates of rules probabil-
ities based on the method of stochastic presentation
for SFSGs are comparable to the estimates provided
by the Viterbi algorithm for the HMMs.

3  Object Recognition

HMMSs and SFSGs were used in 2D shape recog-
nition of hardware tools. The following presents the
methodology and experimental setup.
3.1 Images Database

A database with images of 15 hardware tools (some
of them having moving parts) was used (see figure 1).
The database contains 50 images of each tool acquired
with different poses and shapes, in the case of tools
with moving parts. The database was split in two
equal length sets of data, one used in model training
and the other for performance evaluation.
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Figure 1: Images of hardware tools.

3.2 String Contour Descriptions

Each image was segmented to separate the object
from the background and the object boundary was
sampled at 50 equally spaced points (see figure 2).
Objects shapes were encoded using an 8-directional
differential chain code [7] (the representation is ap-
proximately invariant to translation rotation and scal-
ing transformations).

3.3 Contour Modeling

HMMSs and SFSGs were used for modeling of ob-
ject’s contours. Tests with HMM included fully con-
nected and left-to-right models (LRHMM), trained by
Viterbi and Baum-Welch algorithms. Furthermore,
the number of states was modified in these tests in
order to evaluate its influence on the final results.

Concerning the syntactic approach, the k-tail
method [4] was adopted for grammatical inference.
This algorithm, based on the concept of k-tail equiva-
lence between states, forces some sort of alignment be-
tween the modeled strings, emphasizing and describ-



Figure 2: Example of tool and corresponding bound-
ary sampled at 50 equally spaced points.

ing with greater detail their k-length tails. Several
values for the k parameter were tested. Estimates of
rules probabilities used the method of stochastic pre-
sentation.

3.4 Object Classification

According to the above probabilistic models, the
probability of an observation sequence can be com-
puted. Classification uses Bayes decision criterion.

4 Experimental Results

Figure 3 shows the typical network structures of
the models under evaluation, illustrated for the tool
class in figure 2. It can be seen that the k-tail method
tends to enhance string tail alignment, while no em-

phasis is put to any particular string region by the
HMMs.
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Figure 3: Fully connected HMM (5 states), SFSG
(k=4) and left-to-right HMM (6 states) for the tool
class in figure 2 (in the case of HMM only transitions
with significant probability were represented).

Concerning the estimation of HMM parameters,
two methods were evaluated. The best results were
achieved with the Baum-Welch algorithm that pro-
duced higher values for the likelihood function p(z|H).
This algorithm was then used to train the models as-
sociated with the different tools. The best recogni-
tion rates were obtained with left-to-right HMM mod-
els (perfect recognition was achieved with a 20 state
model). In this case the HMM becomes equivalent to

Test K=2 K=4 K=6

set Pe Pm Pec| Pe Pm Pec| Pe Pm Pec
Global | 7.76 0 7.76 |8.03 .3 7.76|9.14 5.3 3.88
t1 20 0 20 20 0 20 20 0 20
t2 0 0 0 0 0 0 0 0 0
t3 36 0 36 36 0 36 36 0 36
t4 0 0 0 0 0 0 0 0 0
t5 0 0 0 0 0 0 28 28 0
t6 0 0 0 0 0 0 14 14 0
t7 0 0 0 0 0 0 4 4 0
t8 33 0 33 33 0 33 0 0 0
t9 0 0 0 0 0 0 3 3 0
t10 0 0 0 0 0 0 0 0 0
t11 0 0 0 0 0 0 0 0 0
t12 0 0 0 0 0 0 7 7 0
t13 0 0 0 0 0 0 0 0 0
t14 0 0 0 0 0 0 0 0 0
t15 0 0 0 5 5 0 38 38 0

Table 1: Classification results of test samples for sev-
eral values of k. (P. - probability of error; P, -
percentage of strings not recognized; P.. - nearest-
neighbor classification error rate).

a Dynamic Time Warping algorithm although it still
has the advantage of allowing an automatic estima-
tion of all the cost weights). Fully connected mod-
els achieved slightly worse results (99.7% with a 10
state model) and their training is slower. It must
be stressed that some tools have moving parts and
generate chain codes with different structures. The
recognition score obtained with both types of models
show that HMMs are able to capture the variability
contained in the data, preserving the capability to dis-
criminate between different objects.

In the previous tests the initial points of the objects
boundaries were carefully selected. To assess the ro-
bustness of the HMM recognizer with respect to errors
in the initial point estimate, the same methodology
was applied to a set of data consisting of shifted ver-
sions of all training sequences. Recognition scores ob-
tained with arbitrary initial point are 99.5% for fully
connected models (10 states) and 98.9% for left-to-
right models (20 states), confirming the robustness of
the HMM approach.

According to the syntactic approach, grammars
were inferred for different values of the tail param-
eter. The selection of k& controls the level of gener-
alization of patterns beyond the training set. Small
values lead to over-generalization, while high values
limits recognition to samples within the training set,
the concept of high and low being pattern dependent.
This is illustrated in table 1. Two types of errors
are considered: 1- the test sample is recognized by the
grammar associated with the correct class but is also
recognized by another grammar with a higher proba-
bility; 2- the sample cannot be recognized according
to the grammar for its class. The last type of errors
is represented in the columns labeled P,,. The error
probability (columns P.) sums both type of errors.
For k = 2, over generalization leads to errors in the
classification of tools t1, t3 and t8 (t1 and t3 are ar-
ticulated objects with moving parts). Higher values



Iter | Rec | t1 | t2 | t3 | t4 | t5-t7 | t8 | £9-t11 | t12 | t3-t15
9224 | k2 | k2 |k2 [ k2 | k2 [k2| A2 | k2 52
9224 | k3 | k3 |k3 | k3 | k2 |k3| k2 |k3| K2
9224 | ka | ka4 |ka | ka | k2 |ka| k2 | ka | k2
9612 | k5 | k5 k5 | k5 | k2 | k5| k2 k5| k2
9612 | k6 | k6 |k6 | k6 | k2 |k5| k2 |k5 | k2
9612 | k7 | k7 | k7 | k7 | k2 |k5| k2 | k5| k2
9612 | k8 | k8 |k8 | k8 | k2 |k5| k2 |k5 | k2
98.06% | ko | k0 [ ko | ko | k2 |k5| k2 |[k5 [ k2
90.44* | k10 | k10 k0 |k10| k2 |k5| k2 [ k5[ K2
100* | k10 | k1o [ko | K8 | k2 |k5| k2 | k5| k2
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Table 2: Classification results.

of k lead to increased discriminating power but some
test samples are not recognized by the inferred gram-
mars (non-zero P,,). As the later are treated as errors,
the probability of error P. deteriorates. This problem
can be circumvented by probabilistic nearest-neighbor
classification based on error-correcting parsing [11] at
the expense of higher computational costs. Table 1
shows that error rates thus obtained (P..) decrease as
k increases: unrecognized samples are once again cor-
rectly classified and higher separability between pat-
tern grammars is obtained. A trade-off must therefore
be accomplished in order to achieve adequate model-
ing of the data and hence low classification error rates.

Considering the above results, the following ap-
proach was adopted: starting with low values for k,
the classification confusion matrix was analyzed and
the value of k was frozen for the set of tools cor-
rectly classified; the value of k was increased for the
remaining tools and the process was repeated until no
improvement, was obtained. The results are summa-
rized in table 2 where the second column indicates the
global percentage of correct classifications. Frozen k
values are represented in italics. The star in column
2 indicates that nearest-neighbor classification (error-
correcting parsing) was performed.

It should be emphasized that the number of states
thus obtained for each tool is variable, depending on
the complexity of the contours involved, as opposed
to the fixed length structure imposed in the HMM ap-
proach. For instance, for k¥ = 2 the number of states
ranges from 3 to 9 (average 6) as for the configura-
tions of the 9th and 10th iterations the average num-
ber of states is 12 (ranging from 3 to 45). Therefore
perfect object recognition was achieved with the syn-
tactic approach with a less complex model than the
one obtained using HMMs.

5 Summary and Conclusions

HMDMSs and SFSGs were used in 2D shape recogni-
tion of hardware tools. Objects shapes were encoded
using a differential chain code. The k-tail method was
adopted for grammatical inference and several values
for the k parameter were evaluated. Tests with HMM
included fully connected and left-to-right models.

Classification results obtained with the syntactic
approach are comparable with the ones obtained with
the LRHMM), meaning that, for classification pur-
poses, it is sufficient to analyze only part of the con-

tour. This is corroborated by experiments with the
k-tail method applied to the last half of the string
descriptions. For optimal object recognition, models
inferred using the grammars paradigm were less com-
plex than the corresponding LRHMMSs. On the other
hand, the syntactic approach is less robust than the
HMM in the sense that larger training data sets are
needed in order to achieve exact recognition, as the
structure is conditioned by the training sets and struc-
turally complete data sets are essential in order to ob-
tain accurate identification of models. Future work on
the subject includes comparative studies using other
inference methods and models validation concerning
the probabilistic structures.
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