This webpage makes available some auxiliary material related to the paper Factorized Conditional Log-Likelihood, including:
Get a preprint: pdf
If you use aCLL or fCLL in your research, please cite:
Dataset used in the experiments:
Dataset | Features | Classes | Train | Test | |
---|---|---|---|---|---|
1 | australian | 15 | 2 | 690 | CV-5 |
2 | breast | 10 | 2 | 683 | CV-5 |
3 | chess | 37 | 2 | 2130 | 1066 |
4 | cleve | 14 | 2 | 296 | CV-5 |
5 | corral | 7 | 2 | 128 | CV-5 |
6 | crx | 16 | 2 | 653 | CV-5 |
7 | diabetes | 9 | 2 | 768 | CV-5 |
8 | flare | 11 | 2 | 1066 | CV-5 |
9 | german | 21 | 2 | 1000 | CV-5 |
10 | glass | 10 | 7 | 214 | CV-5 |
11 | glass2 | 10 | 2 | 163 | CV-5 |
12 | heart | 14 | 2 | 270 | CV-5 |
13 | hepatitis | 20 | 2 | 80 | CV-5 |
14 | iris | 5 | 3 | 150 | CV-5 |
15 | letter | 17 | 26 | 15000 | 5000 |
16 | lymphography | 19 | 4 | 148 | CV-5 |
17 | mofn-3-7-10 | 11 | 2 | 300 | 1024 |
18 | pima | 9 | 2 | 768 | CV-5 |
19 | satimage | 37 | 6 | 4435 | 2000 |
20 | segment | 20 | 7 | 1540 | 770 |
21 | shuttle-small | 10 | 7 | 3866 | 1934 |
22 | soybean-large | 36 | 19 | 562 | CV-5 |
23 | vehicle | 19 | 4 | 846 | CV-5 |
24 | vote | 17 | 2 | 435 | CV-5 |
25 | waveform-21 | 22 | 3 | 300 | 4700 |
The WEKA package extended with fCLL-based learning of Bayesian network classifiers can be found here. We call into attention that:
-ns
option. See Running extended WEKA package for details.
The Combinatorica package extended with âCLL-based learning of TAN classifiers is available under request and includes:
To run the available extended WEKA package:
-S fCLL
option.-ns
option.data.csv
, not supposed to be shuffled, with the observed frequency estimator smoothed with 0.5 pseudo-counts, in a 10-fold cross validation test, just use the command:
|
Classifier | GHC2 | GHC2 | TAN | TAN | TAN | TAN | C4.5 | 1-NN | 3-NN | 5-NN | SVM | SVM2 | SVMG | LogR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Struct. Learning | LL | fCLL | LL | LL | âCLL | fCLL | |||||||||
Param. Learning | OFE | OFE | OFE | ELR | OFE | OFE | |||||||||
Dataset | |||||||||||||||
1 | australian | 85.22 ± 1.35 |
85.51 ± 1.34 |
84.93 ± 1.36 |
84.35 ± 1.38 |
85.51 ± 1.34 |
85.36 ± 1.35 |
85.94 ± 1.32 |
82.46 ± 1.45 |
85.36 ± 1.35 |
85.94 ± 1.32 |
84.78 ± 1.37 |
75.80 ± 1.63 |
82.61 ± 1.44 |
83.62 ± 1.41 |
2 | breast | 96.19 ± 0.73 |
97.36 ± 0.61 |
96.19 ± 0.73 |
96.19 ± 0.73 |
97.66 ± 0.58 |
97.66 ± 0.58 |
95.90 ± 0.76 |
97.07 ± 0.65 |
96.93 ± 0.66 |
96.93 ± 0.66 |
97.51 ± 0.60 |
96.05 ± 0.75 |
96.63 ± 0.69 |
96.63 ± 0.69 |
3 | chess | 91.72 ± 0.84 |
92.92 ± 0.79 |
92.36 ± 0.81 |
97.09 ± 0.51 |
91.84 ± 0.84 |
93.01 ± 0.78 |
99.45 ± 0.23 |
94.85 ± 0.68 |
95.22 ± 0.65 |
94.20 ± 0.72 |
96.87 ± 0.53 |
99.26 ± 0.26 |
99.17 ± 0.28 |
97.24 ± 0.50 |
4 | cleve | 81.42 ± 2.26 |
82.77 ± 2.19 |
81.76 ± 2.24 |
80.79 ± 2.29 |
84.12 ± 2.12 |
82.77 ± 2.19 |
76.69 ± 2.46 |
78.38 ± 2.39 |
80.41 ± 2.31 |
82.77 ± 2.19 |
82.09 ± 2.23 |
72.97 ± 2.58 |
78.38 ± 2.39 |
81.42 ± 2.26 |
5 | corral | 98.44 ± 1.10 |
99.22 ± 0.78 |
100.00 ± 0.00 |
100.00 ± 0.00 |
99.22 ± 0.78 |
100.00 ± 0.00 |
92.19 ± 2.37 |
92.19 ± 2.37 |
92.19 ± 2.37 |
92.19 ± 2.37 |
89.06 ± 2.76 |
100.00 ± 0.00 |
100.00 ± 0.00 |
88.28 ± 2.84 |
6 | crx | 84.99 ± 1.40 |
86.06 ± 1.36 |
85.45 ± 1.38 |
85.44 ± 1.38 |
86.22 ± 1.35 |
87.14 ± 1.31 |
85.91 ± 1.36 |
82.70 ± 1.48 |
85.15 ± 1.39 |
86.22 ± 1.35 |
86.98 ± 1.32 |
79.94 ± 1.57 |
82.54 ± 1.49 |
86.37 ± 1.34 |
7 | diabetes | 78.91 ± 1.47 |
79.17 ± 1.47 |
79.04 ± 1.47 |
78.77 ± 1.48 |
78.12 ± 1.49 |
78.91 ± 1.47 |
77.60 ± 1.50 |
78.12 ± 1.49 |
77.86 ± 1.50 |
77.73 ± 1.50 |
77.47 ± 1.51 |
76.56 ± 1.53 |
77.86 ± 1.50 |
78.65 ± 1.48 |
8 | flare | 82.74 ± 1.16 |
82.93 ± 1.15 |
82.55 ± 1.16 |
81.71 ± 1.18 |
80.30 ± 1.22 |
82.55 ± 1.16 |
82.27 ± 1.17 |
80.11 ± 1.22 |
81.24 ± 1.20 |
82.65 ± 1.16 |
82.46 ± 1.16 |
82.27 ± 1.17 |
80.49 ± 1.21 |
82.55 ± 1.16 |
9 | german | 73.30 ± 1.40 |
73.90 ± 1.39 |
73.30 ± 1.40 |
73.90 ± 1.39 |
75.80 ± 1.35 |
74.20 ± 1.38 |
73.00 ± 1.40 |
69.80 ± 1.45 |
70.40 ± 1.44 |
73.20 ± 1.40 |
75.60 ± 1.36 |
66.60 ± 1.49 |
71.40 ± 1.43 |
75.80 ± 1.35 |
10 | glass | 77.10 ± 2.87 |
78.97 ± 2.79 |
76.64 ± 2.89 |
75.27 ± 2.95 |
73.83 ± 3.00 |
78.97 ± 2.79 |
75.70 ± 2.93 |
79.44 ± 2.76 |
77.10 ± 2.87 |
73.83 ± 3.00 |
75.70 ± 2.93 |
77.10 ± 2.87 |
78.04 ± 2.83 |
73.83 ± 3.00 |
11 | glass2 | 85.89 ± 2.73 |
85.89 ± 2.73 |
85.89 ± 2.73 |
86.46 ± 2.68 |
85.28 ± 2.78 |
85.89 ± 2.73 |
82.82 ± 2.95 |
86.50 ± 2.68 |
83.44 ± 2.91 |
80.37 ± 3.11 |
86.50 ± 2.68 |
87.73 ± 2.57 |
88.34 ± 2.51 |
86.50 ± 2.68 |
12 | heart | 82.59 ± 2.31 |
83.70 ± 2.25 |
81.85 ± 2.35 |
82.22 ± 2.33 |
85.93 ± 2.12 |
83.70 ± 2.25 |
82.96 ± 2.29 |
83.33 ± 2.27 |
82.59 ± 2.31 |
83.70 ± 2.25 |
84.81 ± 2.18 |
78.52 ± 2.50 |
83.70 ± 2.25 |
84.81 ± 2.18 |
13 | hepatitis | 86.25 ± 3.85 |
88.75 ± 3.53 |
86.25 ± 3.85 |
88.75 ± 3.53 |
85.00 ± 3.99 |
90.00 ± 3.35 |
85.00 ± 3.99 |
87.50 ± 3.70 |
91.25 ± 3.16 |
92.50 ± 2.94 |
83.75 ± 4.12 |
87.50 ± 3.70 |
87.50 ± 3.70 |
78.75 ± 4.57 |
14 | iris | 93.33 ± 2.04 |
94.67 ± 1.83 |
93.33 ± 2.04 |
93.33 ± 2.04 |
94.00 ± 1.94 |
94.00 ± 1.94 |
93.33 ± 2.04 |
94.00 ± 1.94 |
94.67 ± 1.83 |
94.67 ± 1.83 |
94.00 ± 1.94 |
92.67 ± 2.13 |
92.67 ± 2.13 |
92.67 ± 2.13 |
15 | letter | 86.14 ± 0.49 |
86.44 ± 0.48 |
86.06 ± 0.49 |
88.96 ± 0.44 |
86.14 ± 0.49 |
86.40 ± 0.48 |
77.50 ± 0.59 |
90.92 ± 0.41 |
89.60 ± 0.43 |
89.04 ± 0.44 |
89.00 ± 0.44 |
94.20 ± 0.33 |
94.16 ± 0.33 |
86.10 ± 0.49 |
16 | lymphography | 81.76 ± 3.17 |
85.14 ± 2.92 |
83.11 ± 3.08 |
86.46 ± 2.81 |
83.78 ± 3.03 |
83.11 ± 3.08 |
78.38 ± 3.38 |
83.11 ± 3.08 |
83.11 ± 3.08 |
81.76 ± 3.17 |
82.43 ± 3.13 |
81.76 ± 3.17 |
82.43 ± 3.13 |
69.59 ± 3.78 |
17 | mofn | 90.61 ± 1.68 |
90.61 ± 1.68 |
90.90 ± 1.66 |
100.00 ± 0.00 |
90.04 ± 1.73 |
90.90 ± 1.66 |
85.58 ± 2.03 |
89.06 ± 1.80 |
86.35 ± 1.98 |
85.48 ± 2.03 |
100.00 ± 0.00 |
99.90 ± 0.18 |
100.00 ± 0.00 |
100.00 ± 0.00 |
18 | pima | 78.26 ± 1.49 |
78.39 ± 1.49 |
78.52 ± 1.48 |
77.74 ± 1.50 |
78.39 ± 1.49 |
78.52 ± 1.48 |
77.21 ± 1.51 |
76.95 ± 1.52 |
76.82 ± 1.52 |
76.69 ± 1.53 |
78.91 ± 1.47 |
76.95 ± 1.52 |
77.08 ± 1.52 |
78.26 ± 1.49 |
19 | satimage | 88.54 ± 0.71 |
88.25 ± 0.72 |
87.86 ± 0.73 |
87.60 ± 0.74 |
88.20 ± 0.72 |
88.20 ± 0.72 |
82.33 ± 0.85 |
87.86 ± 0.73 |
87.96 ± 0.73 |
87.82 ± 0.73 |
85.19 ± 0.79 |
88.69 ± 0.71 |
88.25 ± 0.72 |
83.54 ± 0.83 |
20 | segment | 95.29 ± 0.76 |
92.49 ± 0.95 |
95.29 ± 0.76 |
95.58 ± 0.74 |
91.17 ± 1.02 |
92.24 ± 0.96 |
94.15 ± 0.85 |
94.02 ± 0.85 |
93.38 ± 0.90 |
91.48 ± 1.01 |
94.66 ± 0.81 |
97.33 ± 0.58 |
97.46 ± 0.57 |
94.53 ± 0.82 |
21 | shuttle | 99.85 ± 0.09 |
100.00 ± 0.00 |
99.85 ± 0.09 |
99.84 ± 0.09 |
100.00 ± 0.00 |
100.00 ± 0.00 |
99.70 ± 0.13 |
99.90 ± 0.07 |
99.75 ± 0.11 |
99.64 ± 0.14 |
99.95 ± 0.05 |
100.00 ± 0.00 |
100.00 ± 0.00 |
99.95 ± 0.05 |
22 | soybean | 93.42 ± 1.05 |
93.42 ± 1.05 |
92.35 ± 1.12 |
93.24 ± 1.06 |
91.99 ± 1.14 |
93.42 ± 1.05 |
91.28 ± 1.19 |
90.21 ± 1.25 |
89.86 ± 1.27 |
89.32 ± 1.30 |
91.46 ± 1.18 |
91.46 ± 1.18 |
91.99 ± 1.14 |
89.15 ± 1.31 |
23 | vehicle | 73.17 ± 1.52 |
72.10 ± 1.54 |
72.58 ± 1.53 |
72.93 ± 1.53 |
70.33 ± 1.57 |
72.10 ± 1.54 |
67.73 ± 1.61 |
71.04 ± 1.56 |
71.16 ± 1.56 |
71.39 ± 1.55 |
71.75 ± 1.54 |
74.00 ± 1.51 |
64.54 ± 1.64 |
70.80 ± 1.56 |
24 | vote | 94.48 ± 1.09 |
91.03 ± 1.37 |
94.25 ± 1.12 |
94.94 ± 1.05 |
93.33 ± 1.20 |
91.49 ± 1.34 |
95.17 ± 1.03 |
92.87 ± 1.23 |
93.56 ± 1.18 |
93.33 ± 1.20 |
93.33 ± 1.20 |
94.02 ± 1.14 |
95.17 ± 1.03 |
92.64 ± 1.25 |
25 | waveform | 75.28 ± 0.63 |
78.19 ± 0.60 |
75.30 ± 0.63 |
75.34 ± 0.63 |
78.26 ± 0.60 |
77.72 ± 0.61 |
65.49 ± 0.69 |
70.79 ± 0.66 |
73.19 ± 0.65 |
74.68 ± 0.63 |
77.66 ± 0.61 |
80.51 ± 0.58 |
81.89 ± 0.56 |
71.36 ± 0.66 |
Classifier | GHC2 | TAN | GHC2 | TAN | TAN | C4.5 | 1-NN | 3-NN | 5-NN | SVM | SVM2 | SVMG | LogR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Struct. Learning | fCLL | âCLL | LL | LL | LL | ||||||||
Param. Learning | OFE | OFE | OFE | OFE | ELR | ||||||||
Competitor | |||||||||||||
TAN-fCLL-OFE | 0.3702 0.3556 |
1.4447 0.0743 |
2.1265 0.0167 |
2.1328 0.0165 |
0.3143 0.3766 |
3.0001 0.0013 |
2.2507 0.0122 |
2.1595 0.0154 |
2.0682 0.0193 |
0.4286 0.3341 |
0.6083 0.2715 |
0.2110 0.4164 |
1.8000 0.0359 |
GHC2-fLL-OFE | -- | 1.4946 0.0675 |
2.2564 0.0120 |
2.2143 0.0134 |
0.0608 0.4758 |
3.0001 0.0013 |
2.3544 0.0093 |
2.2000 0.0139 |
2.1914 0.0142 |
0.3902 0.3482 |
0.7429 0.2288 |
0.1136 0.4548 |
1.6548 0.0490 |
TAN-âCLL-OFE | -- | -- | 0.0429 0.4829 |
-0.3363 0.3683 |
-1.3050 0.0959 |
2.2571 0.0120 |
1.3383 0.0904 |
1.1705 0.1209 |
1.3149 0.0943 |
-0.3954 0.3463 |
-0.2857 0.3876 |
-0.5475 0.2920 |
1.3687 0.0855 |
Classifier | GHC2 | TAN | TAN | TAN | BNC-2P | BNC-MDL | TAN | MULTINET | |
---|---|---|---|---|---|---|---|---|---|
Struct. Learning | fCLL | âCLL | fCLL | LII | CLL | CLL | EAR | EAR | |
Param. Learning | OFE | OFE | OFE | OFE | OFE | OFE | OFE | OFE | |
Dataset | The proposed scoring criteria | Just an heuristic! | Grossman and Domingos (2004) | Pernkopf and Bilmes (2005) | |||||
1 | australian | 85.51±1.38 | 85.51±1.34 | 85.36±1.35 | 85.51 | 87.04 | 85.95 | 85.92±1.52 | 84.47±1.48 |
2 | breast | 97.36±0.61 | 97.66±0.58 | 97.66±0.58 | 97.66 | 95.75 | 94.82 | 97.39±0.59 | 97.39±0.59 |
3 | chess | 92.92±0.79 | 91.84±0.84 | 93.01±0.78 | 86.94 | 95.78 | 95.50 | 94.18±0.72 | 91.93±0.83 |
4 | cleve | 82.77±2.19 | 84.12±2.12 | 82.77±2.19 | 83.11 | 80.03 | 74.37 | 81.07±3.51 | 80.06±2.32 |
5 | corral | 99.22±0.78 | 99.22±0.78 | 100.00±0.00 | 92.19 | 98.81 | 100.00 | 99.20±0.80 | 99.20±0.80 |
6 | crx | 86.06±1.36 | 86.22±1.35 | 87.14±1.31 | 86.22 | 84.20 | 86.03 | 85.75±1.61 | 84.22±1.37 |
7 | diabetes | 79.17±1.47 | 78.12±1.49 | 78.91±1.47 | 77.99 | 73.44 | 74.31 | 72.80±1.19 | 74.86±1.72 |
8 | flare | 82.93±1.15 | 80.30±1.22 | 82.55±1.16 | 79.64 | 81.96 | 82.24 | 83.11±0.51 | 80.58±2.32 |
9 | german | 73.90±1.39 | 75.80±1.35 | 74.20±1.38 | 76.10 | 73.57 | 70.23 | 69.70±0.43 | 73.40±1.86 |
10 | glass | 78.97±2.79 | 73.83±3.00 | 78.97±2.79 | 73.36 | 58.27 | 31.16 | 66.72±2.17 | 70.33±2.72 |
11 | glass2 | 85.89±2.73 | 85.28±2.78 | 85.89±2.73 | 84.66 | 73.09 | 52.99 | 80.38±2.50 | 81.52±2.10 |
12 | heart | 83.70±2.25 | 85.93±2.12 | 83.70±2.25 | 84.44 | 81.26 | 53.65 | 81.48±2.49 | 84.07±2.24 |
13 | hepatitis | 88.75±3.53 | 85.00±3.99 | 90.00±3.35 | 87.50 | 83.82 | 81.23 | 84.33±3.14 | 85.67±3.64 |
14 | iris | 94.67±1.83 | 94.00±1.94 | 94.00±1.94 | 94.00 | 95.80 | 94.37 | 93.33±0.00 | 93.33±0.00 |
15 | letter | 86.44±0.48 | 86.14±0.49 | 86.40±0.48 | 74.58 | 81.70 | 64.70 | 85.72±0.49 | 86.72±0.48 |
16 | lymphography | 85.14±2.92 | 83.78±3.03 | 83.11±3.08 | 84.46 | 83.65 | 72.06 | 81.24±4.75 | 83.01±4.35 |
17 | mofn-3-7-10 | 90.61±0.91 | 90.04±0.94 | 90.90±0.90 | 88.38 | 91.41 | 86.72 | 91.70±0.86 | 91.21±0.88 |
18 | pima | 78.39±1.49 | 78.39±1.49 | 78.52±1.48 | 77.86 | 73.34 | 74.31 | 70.71±1.40 | 75.13±0.74 |
19 | satimage | 88.25±0.72 | 88.20±0.72 | 88.20±0.72 | 84.76 | 82.55 | 77.80 | 81.75±0.86 | 85.40±0.79 |
20 | segment | 92.49±0.95 | 91.17±1.02 | 92.24±0.96 | 90.59 | 94.29 | 86.36 | 92.60±0.94 | 92.99±0.92 |
21 | shuttle-small | 100.00±0.00 | 100.00±0.00 | 100.00±0.00 | 99.70 | 99.53 | 98.14 | 98.97±0.23 | 99.53±0.16 |
22 | soybean-large | 93.42±1.05 | 91.99±1.14 | 93.42±1.05 | 91.81 | 92.46 | 66.27 | 92.18±0.85 | 92.67±0.53 |
23 | vehicle | 72.10±1.54 | 70.33±1.57 | 72.10±1.54 | 62.41 | 70.78 | 55.22 | 62.00±2.19 | 63.46±1.99 |
24 | vote | 91.03±1.37 | 93.33±1.20 | 91.49±1.34 | 90.57 | 95.83 | 95.80 | 92.65±0.86 | 91.48±0.46 |
25 | waveform-21 | 78.19±0.60 | 78.26±0.60 | 77.72±0.61 | 80.36 | 73.30 | 67.19 | 75.30±0.63 | 76.83±0.62 |
Classifier | TAN | TAN | |||||
---|---|---|---|---|---|---|---|
Struct. Learning | LL | LII | |||||
Param. Learning | OFE | OFE | |||||
Competitor | |||||||
TAN-fCLL-OFE | 2.1328 0.0165 |
3.0680 0.0011 |
For any help please contact Alexandra M. Carvalho at .