Factorized conditional log-likelihood

Supplementary material

Alexandra M. Carvalho, Teemu Roos, Arlindo L. Oliveira, and Petri Myllymäki


Contents

This webpage makes available some auxiliary material related to the paper Factorized Conditional Log-Likelihood, including:

Get a preprint: pdf

If you use aCLL or fCLL in your research, please cite:


Theoretical insights


Datasets

Dataset used in the experiments:

Dataset Features Classes Train Test
1 australian 15 2 690 CV-5
2 breast 10 2 683 CV-5
3 chess 37 2 2130 1066
4 cleve 14 2 296 CV-5
5 corral 7 2 128 CV-5
6 crx 16 2 653 CV-5
7 diabetes 9 2 768 CV-5
8 flare 11 2 1066 CV-5
9 german 21 2 1000 CV-5
10 glass 10 7 214 CV-5
11 glass2 10 2 163 CV-5
12 heart 14 2 270 CV-5
13 hepatitis 20 2 80 CV-5
14 iris 5 3 150 CV-5
15 letter 17 26 15000 5000
16 lymphography 19 4 148 CV-5
17 mofn-3-7-10 11 2 300 1024
18 pima 9 2 768 CV-5
19 satimage 37 6 4435 2000
20 segment 20 7 1540 770
21 shuttle-small 10 7 3866 1934
22 soybean-large 36 19 562 CV-5
23 vehicle 19 4 846 CV-5
24 vote 17 2 435 CV-5
25 waveform-21 22 3 300 4700

Download

The WEKA package extended with fCLL-based learning of Bayesian network classifiers can be found here. We call into attention that:

The Combinatorica package extended with âCLL-based learning of TAN classifiers is available under request and includes:


Running extended WEKA package

To run the available extended WEKA package:


Results

Classifier GHC2 GHC2 TAN TAN TAN TAN C4.5 1-NN 3-NN 5-NN SVM SVM2 SVMG LogR
Struct. Learning LL fCLL LL LL âCLL fCLL
Param. Learning OFE OFE OFE ELR OFE OFE
Dataset
1 australian 85.22
± 1.35
85.51
± 1.34
84.93
± 1.36
84.35
± 1.38
85.51
± 1.34
85.36
± 1.35
85.94
± 1.32
82.46
± 1.45
85.36
± 1.35
85.94
± 1.32
84.78
± 1.37
75.80
± 1.63
82.61
± 1.44
83.62
± 1.41
2 breast 96.19
± 0.73
97.36
± 0.61
96.19
± 0.73
96.19
± 0.73
97.66
± 0.58
97.66
± 0.58
95.90
± 0.76
97.07
± 0.65
96.93
± 0.66
96.93
± 0.66
97.51
± 0.60
96.05
± 0.75
96.63
± 0.69
96.63
± 0.69
3 chess 91.72
± 0.84
92.92
± 0.79
92.36
± 0.81
97.09
± 0.51
91.84
± 0.84
93.01
± 0.78
99.45
± 0.23
94.85
± 0.68
95.22
± 0.65
94.20
± 0.72
96.87
± 0.53
99.26
± 0.26
99.17
± 0.28
97.24
± 0.50
4 cleve 81.42
± 2.26
82.77
± 2.19
81.76
± 2.24
80.79
± 2.29
84.12
± 2.12
82.77
± 2.19
76.69
± 2.46
78.38
± 2.39
80.41
± 2.31
82.77
± 2.19
82.09
± 2.23
72.97
± 2.58
78.38
± 2.39
81.42
± 2.26
5 corral 98.44
± 1.10
99.22
± 0.78
100.00
± 0.00
100.00
± 0.00
99.22
± 0.78
100.00
± 0.00
92.19
± 2.37
92.19
± 2.37
92.19
± 2.37
92.19
± 2.37
89.06
± 2.76
100.00
± 0.00
100.00
± 0.00
88.28
± 2.84
6 crx 84.99
± 1.40
86.06
± 1.36
85.45
± 1.38
85.44
± 1.38
86.22
± 1.35
87.14
± 1.31
85.91
± 1.36
82.70
± 1.48
85.15
± 1.39
86.22
± 1.35
86.98
± 1.32
79.94
± 1.57
82.54
± 1.49
86.37
± 1.34
7 diabetes 78.91
± 1.47
79.17
± 1.47
79.04
± 1.47
78.77
± 1.48
78.12
± 1.49
78.91
± 1.47
77.60
± 1.50
78.12
± 1.49
77.86
± 1.50
77.73
± 1.50
77.47
± 1.51
76.56
± 1.53
77.86
± 1.50
78.65
± 1.48
8 flare 82.74
± 1.16
82.93
± 1.15
82.55
± 1.16
81.71
± 1.18
80.30
± 1.22
82.55
± 1.16
82.27
± 1.17
80.11
± 1.22
81.24
± 1.20
82.65
± 1.16
82.46
± 1.16
82.27
± 1.17
80.49
± 1.21
82.55
± 1.16
9 german 73.30
± 1.40
73.90
± 1.39
73.30
± 1.40
73.90
± 1.39
75.80
± 1.35
74.20
± 1.38
73.00
± 1.40
69.80
± 1.45
70.40
± 1.44
73.20
± 1.40
75.60
± 1.36
66.60
± 1.49
71.40
± 1.43
75.80
± 1.35
10 glass 77.10
± 2.87
78.97
± 2.79
76.64
± 2.89
75.27
± 2.95
73.83
± 3.00
78.97
± 2.79
75.70
± 2.93
79.44
± 2.76
77.10
± 2.87
73.83
± 3.00
75.70
± 2.93
77.10
± 2.87
78.04
± 2.83
73.83
± 3.00
11 glass2 85.89
± 2.73
85.89
± 2.73
85.89
± 2.73
86.46
± 2.68
85.28
± 2.78
85.89
± 2.73
82.82
± 2.95
86.50
± 2.68
83.44
± 2.91
80.37
± 3.11
86.50
± 2.68
87.73
± 2.57
88.34
± 2.51
86.50
± 2.68
12 heart 82.59
± 2.31
83.70
± 2.25
81.85
± 2.35
82.22
± 2.33
85.93
± 2.12
83.70
± 2.25
82.96
± 2.29
83.33
± 2.27
82.59
± 2.31
83.70
± 2.25
84.81
± 2.18
78.52
± 2.50
83.70
± 2.25
84.81
± 2.18
13 hepatitis 86.25
± 3.85
88.75
± 3.53
86.25
± 3.85
88.75
± 3.53
85.00
± 3.99
90.00
± 3.35
85.00
± 3.99
87.50
± 3.70
91.25
± 3.16
92.50
± 2.94
83.75
± 4.12
87.50
± 3.70
87.50
± 3.70
78.75
± 4.57
14 iris 93.33
± 2.04
94.67
± 1.83
93.33
± 2.04
93.33
± 2.04
94.00
± 1.94
94.00
± 1.94
93.33
± 2.04
94.00
± 1.94
94.67
± 1.83
94.67
± 1.83
94.00
± 1.94
92.67
± 2.13
92.67
± 2.13
92.67
± 2.13
15 letter 86.14
± 0.49
86.44
± 0.48
86.06
± 0.49
88.96
± 0.44
86.14
± 0.49
86.40
± 0.48
77.50
± 0.59
90.92
± 0.41
89.60
± 0.43
89.04
± 0.44
89.00
± 0.44
94.20
± 0.33
94.16
± 0.33
86.10
± 0.49
16 lymphography 81.76
± 3.17
85.14
± 2.92
83.11
± 3.08
86.46
± 2.81
83.78
± 3.03
83.11
± 3.08
78.38
± 3.38
83.11
± 3.08
83.11
± 3.08
81.76
± 3.17
82.43
± 3.13
81.76
± 3.17
82.43
± 3.13
69.59
± 3.78
17 mofn 90.61
± 1.68
90.61
± 1.68
90.90
± 1.66
100.00
± 0.00
90.04
± 1.73
90.90
± 1.66
85.58
± 2.03
89.06
± 1.80
86.35
± 1.98
85.48
± 2.03
100.00
± 0.00
99.90
± 0.18
100.00
± 0.00
100.00
± 0.00
18 pima 78.26
± 1.49
78.39
± 1.49
78.52
± 1.48
77.74
± 1.50
78.39
± 1.49
78.52
± 1.48
77.21
± 1.51
76.95
± 1.52
76.82
± 1.52
76.69
± 1.53
78.91
± 1.47
76.95
± 1.52
77.08
± 1.52
78.26
± 1.49
19 satimage 88.54
± 0.71
88.25
± 0.72
87.86
± 0.73
87.60
± 0.74
88.20
± 0.72
88.20
± 0.72
82.33
± 0.85
87.86
± 0.73
87.96
± 0.73
87.82
± 0.73
85.19
± 0.79
88.69
± 0.71
88.25
± 0.72
83.54
± 0.83
20 segment 95.29
± 0.76
92.49
± 0.95
95.29
± 0.76
95.58
± 0.74
91.17
± 1.02
92.24
± 0.96
94.15
± 0.85
94.02
± 0.85
93.38
± 0.90
91.48
± 1.01
94.66
± 0.81
97.33
± 0.58
97.46
± 0.57
94.53
± 0.82
21 shuttle 99.85
± 0.09
100.00
± 0.00
99.85
± 0.09
99.84
± 0.09
100.00
± 0.00
100.00
± 0.00
99.70
± 0.13
99.90
± 0.07
99.75
± 0.11
99.64
± 0.14
99.95
± 0.05
100.00
± 0.00
100.00
± 0.00
99.95
± 0.05
22 soybean 93.42
± 1.05
93.42
± 1.05
92.35
± 1.12
93.24
± 1.06
91.99
± 1.14
93.42
± 1.05
91.28
± 1.19
90.21
± 1.25
89.86
± 1.27
89.32
± 1.30
91.46
± 1.18
91.46
± 1.18
91.99
± 1.14
89.15
± 1.31
23 vehicle 73.17
± 1.52
72.10
± 1.54
72.58
± 1.53
72.93
± 1.53
70.33
± 1.57
72.10
± 1.54
67.73
± 1.61
71.04
± 1.56
71.16
± 1.56
71.39
± 1.55
71.75
± 1.54
74.00
± 1.51
64.54
± 1.64
70.80
± 1.56
24 vote 94.48
± 1.09
91.03
± 1.37
94.25
± 1.12
94.94
± 1.05
93.33
± 1.20
91.49
± 1.34
95.17
± 1.03
92.87
± 1.23
93.56
± 1.18
93.33
± 1.20
93.33
± 1.20
94.02
± 1.14
95.17
± 1.03
92.64
± 1.25
25 waveform 75.28
± 0.63
78.19
± 0.60
75.30
± 0.63
75.34
± 0.63
78.26
± 0.60
77.72
± 0.61
65.49
± 0.69
70.79
± 0.66
73.19
± 0.65
74.68
± 0.63
77.66
± 0.61
80.51
± 0.58
81.89
± 0.56
71.36
± 0.66

Classifier GHC2 TAN GHC2 TAN TAN C4.5 1-NN 3-NN 5-NN SVM SVM2 SVMG LogR
Struct. Learning fCLL âCLL LL LL LL
Param. Learning OFE OFE OFE OFE ELR
Competitor
TAN-fCLL-OFE 0.3702
0.3556
1.4447
0.0743
2.1265
0.0167
2.1328
0.0165
0.3143
0.3766
3.0001
0.0013
2.2507
0.0122
2.1595
0.0154
2.0682
0.0193
0.4286
0.3341
0.6083
0.2715
0.2110
0.4164
1.8000
0.0359
GHC2-fLL-OFE -- 1.4946
0.0675
2.2564
0.0120
2.2143
0.0134
0.0608
0.4758
3.0001
0.0013
2.3544
0.0093
2.2000
0.0139
2.1914
0.0142
0.3902
0.3482
0.7429
0.2288
0.1136
0.4548
1.6548
0.0490
TAN-âCLL-OFE -- -- 0.0429
0.4829
-0.3363
0.3683
-1.3050
0.0959
2.2571
0.0120
1.3383
0.0904
1.1705
0.1209
1.3149
0.0943
-0.3954
0.3463
-0.2857
0.3876
-0.5475
0.2920
1.3687
0.0855

Classifier GHC2 TAN TAN TAN BNC-2P BNC-MDL TAN MULTINET
Struct. Learning fCLL âCLL fCLL LII CLL CLL EAR EAR
Param. Learning OFE OFE OFE OFE OFE OFE OFE OFE
Dataset The proposed scoring criteria Just an heuristic! Grossman and Domingos (2004) Pernkopf and Bilmes (2005)
1 australian 85.51±1.38 85.51±1.34 85.36±1.35 85.51 87.04 85.95 85.92±1.52 84.47±1.48
2 breast 97.36±0.61 97.66±0.58 97.66±0.58 97.66 95.75 94.82 97.39±0.59 97.39±0.59
3 chess 92.92±0.79 91.84±0.84 93.01±0.78 86.94 95.78 95.50 94.18±0.72 91.93±0.83
4 cleve 82.77±2.19 84.12±2.12 82.77±2.19 83.11 80.03 74.37 81.07±3.51 80.06±2.32
5 corral 99.22±0.78 99.22±0.78 100.00±0.00 92.19 98.81 100.00 99.20±0.80 99.20±0.80
6 crx 86.06±1.36 86.22±1.35 87.14±1.31 86.22 84.20 86.03 85.75±1.61 84.22±1.37
7 diabetes 79.17±1.47 78.12±1.49 78.91±1.47 77.99 73.44 74.31 72.80±1.19 74.86±1.72
8 flare 82.93±1.15 80.30±1.22 82.55±1.16 79.64 81.96 82.24 83.11±0.51 80.58±2.32
9 german 73.90±1.39 75.80±1.35 74.20±1.38 76.10 73.57 70.23 69.70±0.43 73.40±1.86
10 glass 78.97±2.79 73.83±3.00 78.97±2.79 73.36 58.27 31.16 66.72±2.17 70.33±2.72
11 glass2 85.89±2.73 85.28±2.78 85.89±2.73 84.66 73.09 52.99 80.38±2.50 81.52±2.10
12 heart 83.70±2.25 85.93±2.12 83.70±2.25 84.44 81.26 53.65 81.48±2.49 84.07±2.24
13 hepatitis 88.75±3.53 85.00±3.99 90.00±3.35 87.50 83.82 81.23 84.33±3.14 85.67±3.64
14 iris 94.67±1.83 94.00±1.94 94.00±1.94 94.00 95.80 94.37 93.33±0.00 93.33±0.00
15 letter 86.44±0.48 86.14±0.49 86.40±0.48 74.58 81.70 64.70 85.72±0.49 86.72±0.48
16 lymphography 85.14±2.92 83.78±3.03 83.11±3.08 84.46 83.65 72.06 81.24±4.75 83.01±4.35
17 mofn-3-7-10 90.61±0.91 90.04±0.94 90.90±0.90 88.38 91.41 86.72 91.70±0.86 91.21±0.88
18 pima 78.39±1.49 78.39±1.49 78.52±1.48 77.86 73.34 74.31 70.71±1.40 75.13±0.74
19 satimage 88.25±0.72 88.20±0.72 88.20±0.72 84.76 82.55 77.80 81.75±0.86 85.40±0.79
20 segment 92.49±0.95 91.17±1.02 92.24±0.96 90.59 94.29 86.36 92.60±0.94 92.99±0.92
21 shuttle-small 100.00±0.00 100.00±0.00 100.00±0.00 99.70 99.53 98.14 98.97±0.23 99.53±0.16
22 soybean-large 93.42±1.05 91.99±1.14 93.42±1.05 91.81 92.46 66.27 92.18±0.85 92.67±0.53
23 vehicle 72.10±1.54 70.33±1.57 72.10±1.54 62.41 70.78 55.22 62.00±2.19 63.46±1.99
24 vote 91.03±1.37 93.33±1.20 91.49±1.34 90.57 95.83 95.80 92.65±0.86 91.48±0.46
25 waveform-21 78.19±0.60 78.26±0.60 77.72±0.61 80.36 73.30 67.19 75.30±0.63 76.83±0.62

Classifier TAN TAN
Struct. Learning LL LII
Param. Learning OFE OFE
Competitor
TAN-fCLL-OFE 2.1328
0.0165
3.0680
0.0011

Further information

For any help please contact Alexandra M. Carvalho at .