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ABSTRACT

Iterative shrinkage/thresholding (IST) algorithms have been recently
proposed to handle high-dimensional convex optimization problems
arising in image inverse problems (namely deconvolution) under non-
quadratic regularization (e.g., total variation or sparsity inducing reg-
ularizers on wavelet representations). The convergence speed of
IST algorithms depends heavily on the nature of the direct opera-
tor, being very slow when this operator is severely ill-conditioned.
In this paper, we introduce a two-step version of IST (termed 2IST,
pronounced “twist”) showing much faster convergence for strongly
ill-conditioned operators. We give theoretical results concerning
the convergence behavior of 2IST and show its effectiveness for
wavelet-based and total variation image deconvolution.

Index Terms— Image restoration; deblurring; linear inverse prob-
lems; wavelets; total variation; iterative algorithms.

1. INTRODUCTION

1.1. Problem Formulation

In an inverse problem, the goal is to estimate an unknown imagex

from a (possibly noisy) observationy, produced by an operatorK
applied tox [2]. In a linear inverse problem(LIP), K is linear; ifK
represents a convolution, the LIP is called adeconvolution problem.

Most approaches to LIPs define a solutionbx as a minimizer of
an objective functionf : X → R = [−∞, +∞],

f(x) =
1

2
‖y − Kx‖2 + λ Φ(x), (1)

whereK : X → Y is the (linear)direct operator, X andY are
real Hilbert spaces (with the corresponding norms both denoted as
‖ · ‖), Φ : X → R is the so-called regularizer function,λ ∈ [0, +∞[
is the regularization parameter(see [2], for a comprehensive text
on inverse problems and regularization in imaging). The intuitive
meaning off is clear: its minimizers reach a compromise between
lack of fitness to the observed data (given by‖y−Kx‖2) and degree
of “undesirability” (as assessed byΦ(x)). The parameterλ controls
the relative weight of these two terms.

State-of-the-art regularizers for LIPs in imaging (e.g., total-vari-
ation (TV) [6], [9], [23] and wavelet-based regularization [7], [14],
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[21]) are non-differentiable. This fact, together with the huge di-
mension ofx, placef beyond the reach of off-the-shelf optimization
algorithms and has stimulated research in recent years [4, 6, 11, 13,
15, 18, 19, 22].

1.2. Previous Work and Our Contributions

Recently,iterative shrinkage/thresholding(IST) algorithms, tailored
for objective functions with the form (1), were proposed indepen-
dently by several authors [13, 15, 16, 18, 19, 22]. Convergence of
IST was studied in [13]; more recently IST was shown to belong to a
class of so-calledforward-backwardalgorithms, whose convergence
was studied in [11].

Another class of algorithms, termed IRS (foriterative reweighted
shrinkage), was proposed in [3], [4]. IRS algorithms were shown to
be much faster than IST in cases whereK is very ill-conditioned
[4]. Conversely, for mildly ill-conditionedK and strong noise, IST
is faster than IRS [17].

This paper introduces a new algorithm bringing together the best
of IRS and IST. It’s atwo-step IST(2IST, pronounced “twist”), in the
sense that the update equation uses the two previous estimates, rather
than only the previous one. We present a theorem giving sufficient
conditions for the convergence of 2IST. The effectiveness of 2IST
is experimentally confirmed on a set of image deblurring problems,
using wavelet-based and TV regularization.

The next section reviews several choices ofΦ and (old and new)
results on existence and uniqueness of minimizers off . The previ-
ous IST and IRS algorithms are described in Section 3, which also
reviews previous results on the convergence of IST. The new 2IST
algorithm is introduced in Section 4, which also contains some theo-
retical results concerning its convergence behavior. Finally, Section
5 reports experimental results.

2. REGULARIZERS

2.1. Convex Regularizers and Denoising Functions

We adopt the following standard assumptions about the regularizer
Φ: it is convex, lower semi-continuous (lsc), and proper (see [24] for
details on these and other concepts and results in convex analysis).

A LIP in which K is the identity, i.e., Kx = x, is termed a
denoising problem. In this case, the objective function (1) simplifies
to fden = (1/2)d2

y + λ Φ, wheredy : X → R, defined as

dy(x) = ‖x − y‖ (2)

is real-valued, lsc, proper, and coercive (that is,lim‖x‖→∞ ‖y −
x‖2 = ∞). Consequently,fden is also lsc, proper, and coercive, thus



its set of minimizers is not empty [11, 24]. The strict convexity of
d2
y implies strict convexity offden; hence, it has a unique minimizer

which allows defining thedenoising functionΨλ : X → X as

Ψλ(y) = arg min
x

(
d2
y(x)

2
+ λ Φ(x)

)
, (3)

also known as the (Moreau)proximal mappingof Φ [11, 24].
If Φ(αx) = α Φ(x), for all α ≥ 0 andx ∈ X , Φ is said

positively homogeneous of degree 1(phd-1) and the following result
applies (see [6, 11, 20]):

Theorem 1 If Φ is convex, lsc, proper, and phd-1, then

Ψλ(y) = y − PλC(y), (4)

whereC ⊂ X is a closed convex set depending on the regularizer
Φ, andPA : X → X denotes the orthogonal projection operator
onto the convex setA ⊂ X .

We next list common classes of (convex, lsc, proper) regulariz-
ers and the corresponding denoising functions.

Weighted ℓp Norms: These norms (p ≥ 1), defined as

Φℓ
p
w

(x) = ‖x‖p,w =

 X
i

wi|xi|p
!1/p

, (5)

wherew = [w1, ..., wi, ...], with wi ≥ 0, are convex, lsc, proper,
and phd-1, thus Theorem 1 applies. This class of norms appears
in the discrete version of Besov norm regularizers in wavelet-based
image restoration (see [7]). The denoising function under aΦℓ

p
w

reg-
ularizer can’t, in general, be obtained in closed form. An exception
is p = 1, for whichΨλ is the well-known soft-threshold [14].

p-th Power of Weightedℓp Norms: This class of regularizers, de-
fined asΦp

ℓ
p
w

(x) = ‖x‖p
p,w, appears in many wavelet-based ap-

proaches (see [4, 13, 18, 19, 20] and reference therein). Forp = 1,
Φ1

ℓ1
w

= Φℓ1
w

, and Theorem 1 applies. Forp > 1, Φp

ℓ
p
w

is not phd-
1, and the denoising operator doesn’t have the form (4). In this
case,Ψλ is given by the component-wise application of the func-
tion Sλwi,p, whereSτ,p is the inverse function of

Fτ,p (x) = x + τ p sign(x)|x|p−1. (6)

For p > 1, Fτ,p is bijective, thusSτ,p = F−1
τ,p (called theshrink-

agefunction) is well defined. This function has simple closed forms
for p = 4/3, p = 3/2, or p = 2 [11]. Key features ofSτ,p (for
p > 1) are: it’s strictly monotonic, continuously differentiable, and
its derivative is upper bounded by one [5], [13].

Total Variation: TV regularizers, denotedΦTV (either the contin-
uous formulation [6, 9, 23], or its discrete versions [6]) have been
shown to satisfy the hypotheses of Theorem 1; thus, TV denois-
ing corresponds to the residual of a projection onto a convex set
[6, 11, 20]. Although in this case there is no closed form for this
projection (i.e., for TV denoising), fast iterative methods have been
recently introduced [6, 12].

2.2. Existence and Uniqueness of Solutions

Sufficient conditions for the existence/uniqueness of minimizers of
(1), under regularizersΦp

ℓ
p
w

, Φℓ
p
w

, andΦTV can be derived from re-

sults in [11] (Propositions 3.1 and 5.3). In particular,(i) usingΦp

ℓ
p
w

or Φℓ
p
w

, with wi > 0, ∀i, the set of minimizer of (1) is nonempty;
(ii) usingΦp

ℓ
p
w

, with p > 1 andwi > 0, ∀i, the minimizer is unique;

(iii) with Φp

ℓ
p
w

or Φℓ
p
w

, with p ≥ 1, if K is injective, the minimizer
is unique;(iv) in the finite-dimensional case, ifK is injective the
minimizer is unique.

With ΦTV and a non-injectiveK, the results in [11] can not be
applied to guarantee existence of a minimizer, becauseΦTV is not
coercive. However, under the additional condition that constant im-
ages do not belong to the null space ofK, it can still be shown that
f has at least one minimizer [8].

3. PREVIOUS ALGORITHMS: IST AND IRS

From this point on, we consider only finite-dimensional spaces,X =
R

m, Y = R
n. The class of IST algorithms has the form

xt+1 = (1 − β)xt + β Ψλ

�
xt + K

T (y − Kxt)
�

, (7)

whereβ > 0. Convergence of IST, withβ = 1, was first shown in
[13]; a more general result appeared in [11]. The following is a sim-
plified (namely, for the finite-dimensional case) version of Theorem
5.5 from [11]:

Theorem 2 Letf be given by (1), whereΦ is convex, and‖K‖2
2 <

2, where‖K‖2 is the matrix norm induced by theℓ2 norm. LetG,
the set of minimizers off , be non-empty. Fix somex1; then, the
sequence{xt, t ∈ N} produced by (7), withβ ∈ ]0, 1], converges
to a pointx ∈ G.

The iterations of the IRS algorithm are given by

xt+1 = solution{At x = b} , (8)

with b = KT y andAt = λDt + KT K, whereDt is a (non-
negative) diagonal matrix which depends onxt andΦ. The huge size
of At forces an iterative implementation of (8); in [4], atwo-step
(also calledsecond-order[1]) stationary iterative method(2SIM)
was adopted.

It was shown in [4] that, for strongly ill-conditioned systems,
IRS is much faster than IST, due to the use of the 2SIM. On the
other hand, when noise is the main factor, and the observation op-
erator is not severely ill-conditioned, IST outperforms IRS due to
its closed-form denoising step in each iteration [17]. In the extreme
case of a pure denoising problem (K = I), IST (withβ = 1 and ini-
tialized atx1 = 0) converges in one step, while IRS does not. The
2IST method proposed in this paper keeps the good denoising per-
formance of IST , but is able to handle severely ill-posed problems
as efficiently as IRS.

4. TWO-STEP IST (2IST)

Inspired by the good performance of the 2SIM used in IRS, we pro-
pose a two-step version of IST (2IST), defined as

x1 = Γλ(x0) (9)

xt+1 = (1 − α)xt−1 + (α − β)xt + β Γλ(xt), (10)

for t ∈ N, whereΓλ : R
m → R

m, is defined as

Γλ(x) = Ψλ

�
x + K

T (y − Kx)
�

. (11)

The following theorem partially characterizes the convergence
of the 2IST algorithm, whenf has a unique minimizer.



Theorem 3 Letf be given by (1), whereΦ is convex. Letξ be a real
number such that0 < ξ ≤ λi(K

T K) < 1, whereλi(·) is thei-th
eigenvalue of its matrix argument, and letbρ ≡ (1−

√
ξ)/(1 +

√
ξ).

Let bx be the unique (K is injective) minimizer off and define the
“error vector” as et = xt − bx and the “staked error vector” as

wt =
h
(et+1)

T
√

1 − α (et)
T
iT

. (12)

(i) There exist matricesQt such thatwt+1 = Qt wt, for t ∈ N;
moreover, if 0 < α < 2 and 0 < β < 2 α, thenρ(Qt) < 1,
whereρ(·) denotes the spectral radius, i.e., the largest ab-
solute eigenvalue;

(ii) settingα = bρ 2+ 1 and β = 2 α
1+ξ

guarantees thatρ(Qt) = bρ;

(iii) if 0 < α ≤ 1 and 0 < β < 2 α, thenlimt→∞ wt = 0;

(iv) with α = 1, 2IST becomes IST; takingβ = 2

1+ξ
guarantees

thatρ(Qt) ≤ 1−ξ
1+ξ

≡ ρ.

Theorem 3 extends the results about the convergence of the lin-
ear 2SIM (see [1]) to the non-linear/non-differentiable case. While
the proof in [1] uses linear algebra tools, the possible non-linear/non-
differentiable nature ofΨλ demands non-smooth analysis techniques
[10, 24]. The proof of Theorem 3, as well as a related result for the
case where the minimizer is not unique, can be found in [5].

If Qt = Q, the conditionρ(Q) < 1 would be sufficient for
convergence to zero ofwt. However, in 2IST,Qt is in general
not constant, thusρ(Qt) < 1, ∀t, is not a sufficient condition
for convergence. Convergence of a non-stationary linear iteration
wt+1 = Qt wt, whereQt ∈ Q, depends on thejoint spectral ra-
dius (JSR) of the matrix setQ [25]. Computing (or bounding) the
JSR of (even very small) matrix sets is a hard problem, currently
under active research (see [25] and references therein). The con-
vergence stated in(iii) results from the fact that forα ≤ 1, Qt is
symmetric, thusρ(Qt)=‖Qt‖2 < ε < 1.

Although, whenα > 1, Theorem 3 does not guarantee conver-
gence, we have observed, in a large number of image deconvolution
experiments, that the algorithm always converges with the setting
given in (ii) . Althoughbρ < 1 andρ < 1 do not guarantee conver-
gence, we have experimentally verified that these values are good
indicators of the relative speed of 2IST and IST. Treating the algo-
rithms as linear stationary, we could make the following observation.
The quantities−1/ log10 bρ and−1/ log10 ρ, are approximately the
numbers of iterations needed to reduce the error norm by a factor of
10. For example, withξ = 10−4 (not uncommon in image restora-
tion problems),−1/ log10 bρ ≃ 102, while−1/ log10 ρ ≃ 104; i.e.,
in this case 2IST is roughly two orders of magnitude faster than IST.

5. EXPERIMENTAL RESULTS

This section reports experiments comparing the convergence speeds
of 2IST and IST. We stress that the goal of these experiments is not
to assess the performance (e.g., in terms of SNR improvement) of
image deconvolution criteria of the form (1). Such an assessment
has been carried out (in comparison with other state-of-the-art tech-
niques) in several previous publications [4, 18, 19].

Our first experiment uses a benchmark problem which was stud-
ied in [4, 18, 19] (and in many other deconvolution papers): the
observed image is obtained by convolving the well-known “Cam-
eraman” image with a9 × 9 uniform blur and then adding noise
with variance 40dB below that of the blurred image. We deconvolve
the observed image by minimizing (1), withΦ being the isotropic

discrete version of the TV regularizer [6], andλ hand-tuned for op-
timal performance. In this case,Ψλ is a TV denoising function,
implemented by running a few steps (e.g., 5) of the algorithm pro-
posed in [6]. In all the experiments, the algorithm is initialized with
a Wiener filter estimate, as in [4]. Figure 1 shows the evolution of
the objective functionf(xt) and of the SNR improvement, along the
iterations of 2IST, IST withβ = 1 (the version introduced in [13],
[22]), and IST withβ 6= 1. The 2IST algorithm was stopped when
|f(xt) − f(xt−1)|/f(xt−1) < 10−4 and the other two algorithms
were run until they reached the same value off(xt), which hap-
pened (not shown) after∼ 2100 iterations, forβ 6= 1, and∼ 4000
iterations, forβ = 1.
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Fig. 1. TV deblurring example: evolution of the objective function
and the SNR improvement, for 2IST, and IST withβ = 1 andβ 6= 1.

The second experiment applies wavelet-based deblurring to the
same observed image; here,K = HW, whereH is the blur matrix,
W is the inverse DWT transform, andx is the set of wavelet coeffi-
cients of the unknown imageWx [4, 18, 19]. We use Haar wavelets
and takeΦ as theℓ1 norm, thusΨλ is the soft-threshold. The results
of this experiment are reported in Figure 2. The qualitative behavior
of the algorithms is very similar to the first experiment.

The third and last experiment uses the following setup (also
studied in [4, 18, 19]): the observed image is obtained by convolv-
ing the well-known “Lena” image with a separable blur with kernel
[1, 4, 6, 4, 1]T [1, 4, 6, 4, 1]/256 and then adding noise with standard
deviation equal to7. The blur is much less severe than the uniform
9 × 9 considered in the previous experiments, thus 2IST is not ex-
pected to show such a clear superiority over IST as it did above. The
evolution off(xt) along the iterations of algorithms, with a TV reg-
ularizer, is shown in Figure 3; the plot shows that 2IST is still faster
than both versions of IST, but by a smaller margin than above.
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Fig. 2. Wavelet-based deblurring example: evolution of objective
function for 2IST, and IST withβ = 1 andβ 6= 1.

0 10 20 30 40 50
4.5

4.55

4.6

4.65

4.7

4.75

4.8

4.85

4.9

4.95
x 10

6

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n

 

 

2IST
IST, β≠ 1
IST, β = 1

Fig. 3. TV deblurring example, under mild blur: evolution of objec-
tive function for 2IST, and IST withβ = 1 andβ 6= 1.

6. CONCLUDING REMARKS

We have introduced a two-step version of the recent iterative shrink-
age/thresholding (IST) algorithm, termed 2IST, for a class of convex
objective functions, appearing namely in total-variation and wavelet-
based image restoration. We have presented theoretical results con-
cerning the convergence of 2IST. In a typical benchmark image de-
blurring problem (with strong blur), 2IST converges between 1 and
2 orders of magnitude faster than the original IST.
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