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ABSTRACT

The total variation regularizer is well suited to piecewise
smooth images. If we add the fact that these regularizers
are convex, we have, perhaps, the reason for the resurgence
of interest on TV-based approaches to inverse problems.
This paper proposes a new TV-based algorithm for image
deconvolution, under the assumptions of linear observations
and additive white Gaussian noise. To compute the TV es-
timate, we propose a majorization-minimization approach,
which consists in replacing a difficult optimization problem
by a sequence of simpler ones, by relying on convexity ar-
guments. The resulting algorithm has O(N) computational
complexity, for finite support convolutional kernels. In a
comparison with state-of-the-art methods, the proposed al-
gorithm either outperforms or equals them, with similar
computational complexity.

1. INTRODUCTION

Image deconvolution is a longstanding linear inverse prob-
lem with applications in remote sensing, medical imaging,
astronomy, seismology, and, more generally, image restora-
tion [1]. The challenge in many linear inverse problems
is that they are ill-posed, i.e., either the linear operator
does not admit inverse or it is near singular, yielding highly
noise sensitive solutions. To cope with the ill-posed nature
of these problems, a large number of techniques has been
developed, most of them under the regularization [2, 3] or
the Bayesian frameworks [4].

The heart of the regularization and Bayesian approaches
is the a priori knowledge expressed by the prior/regulariza-
tion term. Wavelet-based priors are considered state-of-the-
art on this respect [5, 6, 11, 12, 13, 14].

Total variation (TV) regularization was introduced by
Rudin, Osher, and Fatemi in [15] and has become popular
in recent years [15, 16, 17, 18, 19, 20]. Recently, the range
of application of TV-based methods has been successfully
extended to inpainting, blind deconvolution, and processing
of vector-valued images (e.g., color).

Arguably, the success of TV regularization relies on
a good balance between the ability to describe piecewise
smooth images and the complexity of the resulting algo-
rithms. In fact, the TV regularizer favors images of bounded
variation, without penalizing possible discontinuities [21].
Furthermore, the TV regularizer is convex, thus opening
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the door to the research of efficient algorithms for comput-
ing optimal or nearly optimal solutions.

1.1. Contribution

Most algorithms to compute TV-based estimates are devel-
oped on the continuous domain. These algorithms fall into
two main categories [22]: 1) solving the associated Euler-
Lagrange equation, which is a non-linear partial differentil
equation (PDE) and 2) using methods based on duality, also
formulated in the continuous domain, to overcome difficul-
ties in the primal problem.

A much less common approach is the application of di-
rect optimization techniques formulated in the discrete do-
main. Observe, however, that any algorithm of type 1) or
2) has to be discretized, and therefore approximated, to be
applied to digital images.

In this paper, we apply a majorization-minimization
(MM) method [23, Ch.6] to design a new direct optimiza-
tion technique formulated in the discrete domain. The MM
rationale consists in replacing a difficult optimization prob-
lem by a sequence of simpler ones, usually by relying on
convexity arguments. In this sense, MM is similar in spirit
to expectation-mazimization (EM). The advantage of the
former resides in the flexibility in the design of the sequence
of simpler optimization problems.

The resulting algorithm for TV deblurring is related
to iteratively reweighted least squares. Each iteration con-
sists in minimizing a quadratic function, which is equivalent
to solving a linear system. We note, however, that in the
MM framework we do not need to minimize the so-called
majorizer function, but only to assure that it decreases’.
Therefore, instead of computing the exact solution of a large
system of equations, we simply run a few iterations of con-
jugate gradient (CG). For finite support convolutional ker-
nels, the obtained algorithm has O(N) computational com-
plexity. Experimental results illustrate the state-of-the-art
competitiveness of the proposed approach.

2. PROBLEM FORMULATION

Let x and y denote vectors containing the true and the
observed image gray levels, respectively, arranged in column
lexicographic ordering.

Herein, we consider the linear observation model

y = Hx +n, (1)

ISimilarly to what happens in generalized EM (GEM) [24].



where H is the observation matrix and n is a sample of a
zero-mean white Gaussian noise vector with covariance oI
(where I denotes the identity matrix).

As in many recent publications [15, 16, 17, 18, 19, 20],
we adopt the TV regularizer to handle the ill-posed nature
of the problem of inferring x. This amounts to computing
the herein termed TV estimate, which is given by

X = arg min L(x), (2)

with
L(x) = |y — Hx|* + A TV(x), (3)

where \ controls the relative weights of the data compliance
and regularization terms.

Since we are assuming, from the beginning, that images
are defined on discrete domains, we use the definition of TV

given by
x) = Z V(Arx)? + (AFx)?, (4)

where A" and A? are linear operators corresponding to
horizontal and vertical first order differences, at pixel i, re-
spectively; i.e., APx = z; — ;, (where j; is the first order
neighbor to the left of i) and AYx = z; — zx,; (where k; is
the first order neighbor above 7).

At this point, we would like to mention that quite often
the I1 regularizer, l1(x) = 3, [(AFx)| + [(A¥x)], has been
used to approximate TV(x), or even wrongly considered
itself as the TV regularizer. However, the distinction be-
tween these two regularizers should be kept in mind, since,
as least in deconvolution problems, TV(x) leads to signifi-
cantly better results, as illustrated in Section 4.

The TV estimate given by (2) favors images with boun-

ded variation without penalizing possible discontinuities [21].

Since both smooth and sharp edges have the same TV(x),
this does not mean that total variation favors sharp edges
relatively to smooth ones, but rather that, for a given value
of TV(x), the estimated edge is decided by the observed
image y.

The objective function L(x) is convex, although not
strictly so. Nevertheless, its minimization represents a sig-
nificant numerical optimization challenge, owing to the non-
differentiability of TV(x). In the next section, we introduce
a new optimization algorithm, fully developed on the dis-
crete domain, which is simple and yet computationally ef-
ficient.

3. AN MM APPROACH TO TV
DECONVOLUTION

Let x® denote the current image iterate and Q(x|x®)) a
function that satisfies the following two conditions:

L") = Q&x"x") ()
Lix) < Q@xx"), x#x", (6)

ie, Q(x|x®), as a function of x, majorizes (i.e., upper
bounds) L(x). Suppose now that x**!) is obtained by

xtD = arg mln Q(x|x"); (7)

then,

L(X(H'l)) < Q(X(t+1)|x(t)) < Q(x(t)|x(t)) _ L(x(t)), (8)
where the left hand inequality follows from the definition
of @ and the right hand inequality from the definition of
x(*TY " The sequence L(x(t))7 for t = 1,2,..., is, there-
fore, nonincreasing. Under mild conditions, namely assum-
ing that Q(x|x’) is continuous in both x and x’, all limit
points of the MM sequence L(x<t)) are stationary points of
L, and L(x) converges monotonically to L* = L(x*), for
some stationary point x*. If, in addition, L is strictly con-
vex, then x® converges to the global minimum of L. The
proof of these properties parallels that of the EM algorithm,
which can be found in [24].

Observe that in order to have L(x®tY) < L(x®), it
is not necessary to minimize Q(x|x") w.r.t x, but only
to assure that Q(x“*tV|x®) < Q(x®|x®). This property
has a relevant impact, namely when the minimum of ) can
not be found exactly or it is hard to compute.

The majorization relation between functions is closed
under sums, products by nonnegative constants, limits, and
composition with increasing functions [23, Ch.6], [14]. These
properties allow us to tailor good bound functions @, a cru-
cial step in designing MM algorithms. This topic is exten-
sively addressed in [23].

3.1. A quadratic bound function for L

We now derive a quadratic bound function for L. The mo-
tivation is twofold: first, minimizing quadratic functions
is equivalent to solving linear systems; second, we do not
need to solve exactly each linear system, but rather only
to decrease the associated quadratic function, which can be
achieved by running a few steps of conjugate gradient (CG).

Note that the term ||y — Hx||?, present in the definition
of L in (3), is already quadratic. Let us then focus our
attention on each term of TV(x) given by (4). Using the
fact that

,—( mO), (9)
for any x > 0 and x¢ > 0, it follows that the function Qrv
defined as

Qrv(xix®) = TV(x")

[(alx)? - (alx1)?]
— /(Arx®)2 + (Avx®)2
[(a1%)? - (arx®)?]
V(A

x(t) + (Afx(t))Q

+22

satisfies TV(x) < Qrv (x|x?), for x # x| and TV(x) =
Qrv (x|x?), for x = x®. Function Qrv (x|x*) is thus a
quadratic majorizer for TV (x).

Let D" and DV denote matrices such that D"x and
D"x yield the first order horizontal and vertical differences,
respectively. Define also W® = diag(w®, w®), where

W(t) _ A/Q
VXD + AxO)

i=1,2,...|. (10



With these definitions, Qrv (x|x®)) can be written in a
compact notation as

Qrv(x[x) =x"D"W® Dx + ', (11)

where D = [(D™)T (D?)*]7, and c'® stands for a constant.
Given that the first term of L(x) in (3) is quadratic, a
quadratic bound function for L is thus

Q(xx"™) = lly — Hx||* + Qrv (xx™"). (12)

We stress that matrix W present in Qv (x|x(t>), is com-
puted from x®.

The minimization of (12) leads to the following update
equation:

x(D = (HTH + DTW(”D) "HTy. (13)
Obtaining x“*V) via (13) is hard from the computa-
tional point of view, as it amounts to solving the huge lin-
ear system A¥x = y’, where A = H'H + DTW®D
and y' = HTy. We tackle this difficulty by replacing the
minimization of Q(x|x®) with a few CG iterations, thus

assuring the decrease of Q(X|X(t)), with respect to x. The
resulting scheme is still an MM algorithm.

Algorithm 1 MM Algorithm for TV deconvolution

’

Initialization: xo =y
1: for ¢t := 0 to StopRule do
2: W® = diag[w® w®] {w® given by (10)}

3 x(tHD) = x®

4:  while [[AOxHD _ /|| > ¢|ly’|| do
5: xtD .= next CG iteration

6 end while

7: end for

Algorithm 1 shows the pseudo-code for the proposed
MM scheme. Line 2 implements the majorization step; lines
3 to 6 decrease Q(x|x®). Parameter ¢ in line 4 implicitly
controls the number of CG iterations.

4. EXPERIMENTAL RESULTS

We now present a set of three deconvolution experiments
illustrating the performance of Algorithm 1. To assess the
relative merit of the proposed methodology, TV estima-
tion results are compared with wavelet-based state-of-the-
art methods [6, 13, 14, 25, 26].

In the first experiment, the image is the “cameraman” of
size 256 x 256, the blur is uniform of size 9x9, and the signal-
to-noise ratio of the blurred image (BSNR = var[Hx]/o?)
is set to BSNR=40dB, corresponding to a noise standard
deviation of 0.56. In the second experiment, the image is
the “Shepp-Logan” phantom of size 256 x 256, the blur
is uniform of size 9 x 9, and BSNR=40dB, corresponding
to a noise standard deviation of ¢ = 0.4. In the third
experiment, the image is “Lena” of size 256 x 256, the blur is
the matrix [1,4,6,4,1]7[1,4,6,4,1]/256, and BSNR=17 dB,
corresponding to a noise standard deviation of o = 7.

The regularization parameter was set to ko2, with k =
0.064. This rule can be understood under the Bayesian
setup. In fact, the first term of the right hand side of (3)

" X 104 b)
:
24
23
22
21
2
19
18
7 8 9

1 2 3 4 5 6 1
MM iterations d)

a)
@ 0
)
Fig. 1. Shepp-Logan phantom: a) original image; b)
blurred noisy image (9 x 9 uniform, BSNR=40dB); c) Re-
stored imaged with Algorithm 1 (ISNR = 14.24dB); d) Evo-
lution of L[x®)].

divided by 262 is the loglikelihood of x, whereas the second
is proportional to the logarithm of the prior; therefore, if
we multiply both terms by 202, we obtain a ko? rule. The
value of k£ was found empirically. In spite of the good results
next presented, we are aware that there is room to improve
the performance of the introduced algorithm, by developing
better ways of selecting the regularization parameter.

Table 1 shows improvements of SNR (ISNR= |y —
x||?/||®—x||?) of the proposed approach and of the methods
described in [6, 13, 14, 25, 26], for the three experiments.
The last line of Table 1 shows the ISNR obtained using [y
regularization. The algorithm for computing the /; solu-
tion is similar to Algorithm 1, but using a different bound
function: (Aix)2/|Aix(t))| for terms |A;x|.

Algorithm 1 outperforms the others in all experiments.
The largest improvement is obtained for the Shepp-Logan
phantom. This is in agreement with the type of regular-
ization used, which, basically, enforces piecewise smooth
solutions. For the l; based solution, regularization parame-
ter was obtained in a clairvoyant way, by computing the
best ISNR using the original image. In spite of this unfair
advantage over the remaining methods, [1 estimates are the
worst. This illustrates what we wrote above: T'V regular-
ization leads to better results than l; regularization.

Figure 1 shows the Shepp-Logan phantom of size 256 x
256, a degraded version (uniform 9 x 9 blur, BSNR=40dB),
the image restored with Algorithm 1, corresponding to an
ISNR of 14.24dB, and the evolution of the objective func-
tion L[x®], for t = 1,2,...,10. The computation time, in
a 3GHz Pentium, was of approximately 2 minutes, yielding
a mean time per iteration of 12 seconds.

If the observation mechanism is a finite support con-
volution kernel, then the product Hx can be computed
with complexity O(N). If the support is not finite, this
product can still be computed efficiently with complexity
O(Nlog N) via FFT, by embedding H in a larger block-
circulant matrix [1]. Thus, for convolution kernels, the com-



Table 1. ISNR of the proposed algorithm (Algoritm 1) and
of the methods [13], [14], [25], [26], [6].

ISNR
Method Exp. 1 (dB) Exp. 2 (dB) Exp. 3 (dB)
Algoritm 1 8.52 14.27 2.97
[13] 8.10 12.02 2.94
[14] 8.16 12.00 -
[25] 8.04 ; -
[26] 7.30 - -
(6] 6.70 - -
5 6.42 8.90 2.46

plexity of the proposed algorithm is O(N) and O(N log N)
for finite and non-finite support convolution kernels, respec-
tively. If the observation mechanism is not a convolution,
the complexity of the algorithm is chieﬂqy determined by the
complexity of the products Hx and H” x.

5. CONCLUDING REMARKS

We have developed a new majorization-minimization algo-
rithm for image deconvolution under total variation regu-
larization. The complexity of the algorithm is O(N) for
finite support convolution kernels, where N is the number
of image pixels. In the set of experiments carried out, the
proposed method outperforms the state-of-the-art methods.

6. REFERENCES

[1] A. Jain, Fundamentals of Digital Image Processing, Pren-
tice Hall, Englewood Cliffs, 1989.

[2] T. Poggio, V. Torre, and C. Koch, “Computational vision
and regularization theory,” Nature, vol. 317, pp. 314-319,
1985.

[3] D. Terzopoulos, “Regularization of inverse visual problems
involving discontinuities,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 8, pp. 413-424, 1986.

[4] S. Geman and D. Geman, “Stochastic relaxation, Gibbs
distribution and the Bayesian restoration of images,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol.
PAMI-6, pp. 721-741, 1984.

[5] D. Donoho, “Nonlinear solution of linear inverse prob-
lems by wavelet-vaguelette decompositions,” Jour. Applied
and Computational Harmonic Analysis, vol. 1, pp. 100-115,
1995.

[6] M. Banham and A. Katsaggelos, “Spatially adaptive
wavelet-based multiscale image restoration,” IEEE Trans.
Image Processing, vol. 5, pp. 619-634, 1996.

[7] F. Abramovich, T. Sapatinas, and B. Silverman, “Wavelet
thresholding via a Bayesian approach,” Journal of the Royal
Statistical Society (B), vol. 60, 1998.

[8] J. Liu and P. Moulin, “Complexity-regularized image
restoration,” Proc. IEEE International Conference Image
Processing - ICIP’98, pp. 555559, 1998.

[9] Y. Wan and R. Nowak, “A wavelet-based approach to joint
image restoration and edge detection,” in SPIE Conference
Wavelet Applications in Signal and Image Processing VII,
Denver, CO, 1999, SPIE Vol. 3813.

[10] J. Kalifa and S. Mallat, “Minimax restoration and decon-
volution,” in Bayesian Inference in Wavelet Based Mod-
els, P. Muller and B. Vidakovic, Eds. Springer-Verlag, New
York, 1999.

[11]

[12]

[13]

[14]

(18]

(19]

(21]

22]

23]

24]

[25]

[26]

A. Jalobeanu, N. Kingsbury, and J. Zerubia, “Image de-
convolution using hidden Markov tree modeling of complex
wavelet packets,” in Proceedings of the IEEE International
Conference Image Processing — ICIP’2001, Thessaloniki,
Greece, 2001.

M. Figueiredo and R. Nowak, “An EM algorithm for
wavelet-based image restoration,” IEEE Trans. Image
Processing, vol. 12, no. 8, pp. 906-916, 2003.

J. Bioucas-Dias, “Bayesian wavelet-based image deconvo-
lution: a GEM algorithm exploiting a class of heavy-tailed
priors,” IEEE Trans. Image Processing, 2005, In Press.

M. Figueiredo and R. Nowak, “A bound optimization ap-
proach to wavelet-based image deconvolution,” in IEEE
International Conference Image Processing-ICIP’05, 2005,
vol. II, pp. 782-785.

S. Osher L. Rudin and E. Fatemi, “Nonlinear total variation
based noise removal algorithms,” Physica D., vol. 60, pp.
259-268, 1992.

S. Alliney, “An algorithm for the minimization of mixed
11 and 12 norms with application to bayesian estimation,”
IEEE Signal Processing, vol. 42, no. 3, pp. 618-627, 1994.

S. Osher, A. Solé, and L. Vese, “Image decomposition and
restoration using total variation minimization and the h!
norm,” SIAM Multiscale Modeling and Simulation, vol. 1,
no. 2, pp. 349-370, 2003.

I. Pollak, A. Willsky, and Y. Huang, “Nonlinear evolution
equations as fast and exact solvers of estimation problems,”
IEEE Signal Processing, vol. 53, no. 2, pp. 484498, 2005.

H. Fu, M. Ng, M. Nikolova, and J. Barlow, “Efficient min-
imization methods of mixed {* — ! and ! — {2 norms for
image restoration,” To ppear in SIAM Journal Scientific
Computing, 2005.

E. Tadmor, S. Nezzar, , and L. Lese, “A multiscale image
representation using hierarchical (bv,1?) decompositions,”
Thechnical report 03-32, UCLA, 2003.

L. Evans and R. Gariepy., Measure Theory and Fine Prop-
erties of Functions, CRC Press, 1992.

T. Chan, S. Esedoglu, F. Park, and A. Yip, “Recent devel-
opments in total variation image restoration,” in Mathemat-
ical Models of Cmputer Vision Computer Vision, N. Para-
gios, Y. Chen, and O. Faugeras, Eds. 2005, Springer Verlag.

K. Lange, Optimization, Spinger Texts in Statistics.
Springer-Verlag, 2004.
C. Wu, “On the convergence properties of the EM algo-

rithm,” The Annals of Statistics, vol. 11, no. 1, pp. 95-103,
1983.

M. Mignotte, “An adaptive segmentation-based regular-
ization term for image restoration,” in IEFE International
Conference Image Processing-ICIP’05, 2005, vol. I, pp. 901—
784.

R. Neelamani, H. Choi, and R. G. Baraniuk, “ForWaRD:
Fourier-wavelet regularized deconvolution for ill-conditioned
systems,” vol. 52, no. 2, pp. 418-433, Feb. 2004.



